
Page of 1 183 Paladin Blockchain Security

Smart Contract
Security Assessment

For Ambit Finance
19 November 2023

paladinsec.co info@paladinsec.co

Final Report

Table of Contents 
 
Table of Contents	
2

Disclaimer	
8

1 Overview	
9

1.1 Summary	
9

1.2 Contracts Assessed	
10

1.3 Findings Summary	
12

1.3.1 Global Issues	
13

1.3.2 AddressRegistryExtensions	
13

1.3.3 Errors	
13

1.3.4 Fees	
14

1.3.5 InterestMath	
14

1.3.6 Normalizer	
14

1.3.7 PercentageMath	
14

1.3.8 PortfolioAssetExtensions	
14

1.3.9 RayMath	
15

1.3.10 USDMath	
15

1.3.11 AddressRegistry	
15

1.3.12 AssetStorage	
15

1.3.13 Overseer	
16

1.3.14 Treasury	
16

1.3.15 DynamicInterestRateModel	
16

1.3.16 FixedInterestRateModel	
16

1.3.17 Liquidator	
17

1.3.18 Market	
18

1.3.19 MarketLiquidation	
19

1.3.20 MarketStorage	
19

1.3.21 DepositorVaultMarketplaceAdapter	
19

Page of 2 183 Paladin Blockchain Security

1.3.22 Marketplace	
20

1.3.23 SpotMarketMarketplaceAdapter	
20

1.3.24 ChainlinkAggregatorPriceOracle	
21

1.3.25 DepositorVaultTokenPriceOracle	
21

1.3.26 FallbackPriceOracle	
21

1.3.27 Custodian	
22

1.3.28 CustodianMigrator	
22

1.3.29 Portfolio	
22

1.3.30 PortfolioStorage	
23

1.3.31 AdminAccessControl	
23

1.3.32 AuthorizedAccessControl	
23

1.3.33 AccessControlList	
23

1.3.34 AmbitToken	
23

1.3.35 Pausable	
24

1.3.36 Sweepable	
24

1.3.37 DepositorVault	
24

1.3.38 DepositorVaultMigrator	
25

1.3.39 DepositorVaultStorage	
25

1.3.40 DepositorVaultToken	
25

1.3.41 LinearDistributedYieldVault	
26

1.3.42 Vault	
26

1.3.43 Flashlender	
26

2 Findings	
27

2.1 Global Issues	
27

2.1.1 Issues & Recommendations	
28

2.2 Libraries/AddressRegistryExtensions	
34

2.2.1 Issues & Recommendations	
34

2.3 Libraries/Errors	
35

2.3.1 Issues & Recommendations	
35

2.4 Libraries/Fees	
36

Page of 3 183 Paladin Blockchain Security

2.4.1 Issues & Recommendations	
36

2.5 Libraries/InterestMath	
37

2.5.2 Issues & Recommendations	
37

2.6 Libraries/Normalizer	
38

2.6.1 Issues & Recommendations	
39

2.7 Libraries/PercentageMath	
40

2.7.1 Issues & Recommendations	
40

2.8 Libraries/PortfolioAssetExtensions	
41

2.8.1 Issues & Recommendations	
41

2.9 Libraries/RayMath	
42

2.9.1 Issues & Recommendations	
43

2.10 Libraries/USDMath	
45

2.10.1 Issues & Recommendations	
45

2.11 Core/AddressRegistry	
46

2.11.1 Privileged Functions	
46

2.11.2 Issues & Recommendations	
46

2.12 Core/AssetStorage	
47

2.12.1 Privileged Functions	
47

2.12.2 Issues & Recommendations	
48

2.13 Governance/Overseer	
52

2.13.1 Privileged Functions	
52

2.13.2 Issues & Recommendations	
53

2.14 Governance/Treasury	
55

2.14.1 Privileged Functions	
55

2.14.2 Issues & Recommendations	
56

2.15 Market/DynamicInterestRateModel	
57

2.15.1 Issues & Recommendations	
58

2.16 Market/FixedInterestRateModel	
60

2.16.1 Privileged Functions	
60

2.16.2 Issues & Recommendations	
61

Page of 4 183 Paladin Blockchain Security

2.17 Market/Liquidator	
63

2.17.1 Privileged Functions	
63

2.17.2 Issues & Recommendations	
64

2.18 Market/Market	
72

2.18.1 Privileged Functions	
72

2.18.2 Issues & Recommendations	
73

2.19 Market/MarketLiquidation	
84

2.19.1 Privileged Functions	
85

2.19.2 Issues & Recommendations	
86

2.20 Market/MarketStorage	
95

2.20.1 Privileged Functions	
95

2.20.2 Issues & Recommendations	
95

2.21 Marketplace/DepositorVaultMarketplaceAdapter	
96

2.21.1 Issues & Recommendations	
97

2.22 Marketplace/Marketplace	
99

2.22.1 Issues & Recommendations	
100

2.23 Marketplace/SpotMarketMarketplaceAdapter	
110

2.23.1 Issues & Recommendations	
111

2.24 Oracle/ChainlinkAggregatorPriceOracle	
117

2.24.1 Issues & Recommendations	
117

2.25 Oracle/DepositorVaultTokenPriceOracle	
118

2.25.1 Issues & Recommendations	
119

2.26 Oracle/FallbackPriceOracle	
122

2.26.1 Issues & Recommendations	
123

2.27 Portfolio/Custodian	
126

2.27.1 Privileged Functions	
126

2.27.2 Issues & Recommendations	
127

2.28 Portfolio/CustodianMigrator	
130

2.28.1 Issues & Recommendations	
130

2.29 Portfolio/Portfolio	
131

Page of 5 183 Paladin Blockchain Security

2.29.1 Privileged Functions	
131

2.29.2 Issues & Recommendations	
132

2.30 Portfolio/PortfolioStorage	
138

2.30.1 Privileged Functions	
138

2.30.2 Issues & Recommendations	
138

2.31 Security/AdminAccessControl	
139

2.31.1 Privileged Functions	
139

2.31.2 Issues & Recommendations	
140

2.32 Security/AuthorizedAccessControl	
141

2.32.1 Issues & Recommendations	
141

2.33 Security/AccessControlList	
142

2.33.1 Issues & Recommendations	
142

2.34 Tokens/AmbitToken	
143

2.34.1 Privileged Functions	
143

2.34.2 Issues & Recommendations	
144

2.35 Utils/Pausable	
145

2.35.1 Privileged Functions	
145

2.35.2 Issues & Recommendations	
145

2.36 Utils/Sweepable	
146

2.36.1 Privileged Functions	
146

2.36.2 Issues & Recommendations	
147

2.37 Vault/DepositorVault	
149

2.37.1 Privileged Functions	
150

2.37.2 Issues & Recommendations	
151

2.38 Vault/DepositorVaultMigrator	
166

2.38.1 Privileged Functions	
166

2.38.2 Issues & Recommendations	
167

2.39 Vault/DepositorVaultStorage	
171

2.39.1 Privileged Functions	
171

2.39.2 Issues & Recommendations	
171

Page of 6 183 Paladin Blockchain Security

2.40 Vault/DepositorVaultToken	
172

2.40.1 Privileged Functions	
172

2.40.2 Issues & Recommendations	
172

2.41 Vault/LinearDistributedYieldVault	
173

2.41.1 Issues & Recommendations	
174

2.42 Vault/Vault	
178

2.42.1 Issues & Recommendations	
179

2.42 Vault/Flashlender	
182

2.42.1 Issues & Recommendations	 182

Page of 7 183 Paladin Blockchain Security

Disclaimer

Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity
of and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in
the codes that were provided for the scope of this audit. This audit report does not constitute
agreement, acceptance or advocation for the Project that was audited, and users relying on this
audit report should not consider this as having any merit for financial advice in any shape, form or
nature. The contracts audited do not account for any economic developments that may be pursued
by the Project in question, and that the veracity of the findings thus presented in this report relate
solely to the proficiency, competence, aptitude and discretion of our independent auditors, who
make no guarantees nor assurance that the contracts are completely free of exploits, bugs,
vulnerabilities or deprecation of technologies. Further, this audit report shall not be disclosed nor
transmitted to any persons or parties on any objective, goal or justification without due written
assent, acquiescence or approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor
should it be used to signal that any persons reading this report should invest their funds without
sufficient individual due diligence regardless of the findings presented in this report. Information is
provided ‘as is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the
contracts audited. In no event will Paladin or its partners, employees, agents or parties related to
the provision of this audit report be liable to any parties for, or lack thereof, decisions and/or
actions with regards to the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to
cryptocurrencies are highly volatile and speculative by nature. All reasonable due diligence and
safeguards may yet be insufficient, and users should exercise considerable caution when
participating in any shape or form in this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate
recommendations to the Project team with respect to the rectification, amendment and/or revision
of any highlighted issues, vulnerabilities or exploits within the contracts provided. It is the sole
responsibility of the Project team to sufficiently test and perform checks, ensuring that the
contracts are functioning as intended, specifically that the functions therein contained within said
contracts have the desired intended effects, functionalities and outcomes of the Project team.

Paladin retains the right to re-use any and all knowledge and expertise gained during the audit
process, including, but not limited to, vulnerabilities, bugs, or new attack vectors. Paladin is
therefore allowed and expected to use this knowledge in subsequent audits and to inform any third
party, who may or may not be our past or current clients, whose projects have similar
vulnerabilities. Paladin is furthermore allowed to claim bug bounties from third-parties while doing
so. 

Page of 8 183 Paladin Blockchain Security

1	 	 Overview

This report has been prepared for Ambit Finance on the Arbitrum network. Paladin
provides a user-centred examination of the smart contracts to look for
vulnerabilities, logic errors or other issues from both an internal and external
perspective.

1.1	 	 Summary

Project Name Ambit Finance

URL TBC

Platform Arbitrum

Language Solidity

Preliminary
Contracts

https://github.com/ambitfi/ambitfi-contracts/tree/
d0e992d817afc4fd2636505142e614e8b98a8b5d/contracts

Resolution 1 https://github.com/ambitfi/ambitfi-contracts/tree/
142bf2677ccb3a36eee709d8601e5532aa5df080/contracts

Resolution 2 https://github.com/ambitfi/ambitfi-contracts/tree/
b8526ecb2b1ab27668a2c3f30d1aa4321040f94e/contracts

Page of 9 183 Paladin Blockchain Security

https://github.com/ambitfi/ambitfi-contracts/tree/d0e992d817afc4fd2636505142e614e8b98a8b5d/contracts
https://github.com/ambitfi/ambitfi-contracts/tree/142bf2677ccb3a36eee709d8601e5532aa5df080/contracts
https://github.com/ambitfi/ambitfi-contracts/tree/b8526ecb2b1ab27668a2c3f30d1aa4321040f94e/contracts

1.2	 	 Contracts Assessed

Name Contract
Live Code
Match

AddressRegistryExte
nsions

Errors

Fees

InterestMath

Normalizer

PercentageMath

PortfolioAssetExten
sions

RayMath

USDMath

AddressRegistry

AssetStorage

Overseer

Treasury

DynamicInterestRate
Model

FixedInterestRateMo
del

Liquidator

Market

MarketLiquidation

MarketStorage

DepositorVaultMarke
tplaceAdapter

Page of 10 183 Paladin Blockchain Security

Marketplace

SpotMarketMarketpla
ceAdapter

ChainlinkAggregator
PriceOracle

DepositorVaultToken
PriceOracle

FallbackPriceOracle

Custodian

CustodianMigrator

Portfolio

PortfolioStorage

AdminAccessControl

AuthorizedAccessCon
trol

AccessControlList

AmbitToken

Pausable

Sweepable

DepositorVault

DepositorVaultMigra
tor

DepositorVaultStora
ge

DepositorVaultToken

LinearDistributedYi
eldVault

Vault

Flashlender

Page of 11 183 Paladin Blockchain Security

1.3	 	 Findings Summary

Classification of Issues

 

Severity Found Resolved
Partially
Resolved

Acknowledged (no
change made)

1 - - 1

14 10 - 4

18 12 2 4

49 27 1 21

52 42 5 5

Total 134 91 8 35

 Low

 High

 Governance

 Medium

 Informational

Severity Description

Issues under this category are where the governance or owners of the
protocol have certain privileges that users need to be aware of, some of which
can result in the loss of user funds if the governance’s private keys are lost or
if they turn malicious, for example.

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its
functions. Issues under this classification are recommended to be fixed with
utmost urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be
fixed as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be
fixed nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level
of risk, if any.

 Low

 Informational

 Governance

 High

 Medium

Page of 12 183 Paladin Blockchain Security

1.3.1	 Global Issues

1.3.2	 AddressRegistryExtensions

1.3.3	 Errors

ID Severity Summary Status

01 Governance risk: Change of _interestRateModel can break
contract

02 General assumption of baseAsset being worth 1 USD

03 Governance has full control over all funds in the ecosystem

04 Lack of staleness check when using Chainlink oracle

05 Lack of upper limit in portfolio assets

06 Pausing and unpausing can prevent/enable liquidations

07 Protocol does not work with tokens that have a fee on transfer

08 Sensitive structure for privileges

09 Users can supply and withdraw in the same block

INFO

ACKNOWLEDGED

INFO

HIGH

HIGH

LOW

RESOLVED

GOV

RESOLVED

INFO

RESOLVED

RESOLVED

LOW

ACKNOWLEDGED

RESOLVEDLOW

ACKNOWLEDGED

ACKNOWLEDGED

ID Severity Summary Status

10 Typographical issuesINFO RESOLVED

ID Severity Summary Status

11 Unused custom errorsINFO RESOLVED

Page of 13 183 Paladin Blockchain Security

1.3.4	 Fees

1.3.5	 InterestMath

1.3.6	 Normalizer

1.3.7	 PercentageMath

1.3.8	 PortfolioAssetExtensions

 No issues found.

ID Severity Summary Status

12 Lack of validation within used contractsLOW PARTIAL

ID Severity Summary Status

13 Typographical issues RESOLVEDINFO

ID Severity Summary Status

14 Decimals will be truncated when converting to lower decimals ACKNOWLEDGEDLOW

ID Severity Summary Status

15 Typographical issuesINFO RESOLVED

Page of 14 183 Paladin Blockchain Security

1.3.9	 RayMath

1.3.10	 USDMath

1.3.11	 AddressRegistry

No issues found.

1.3.12	 AssetStorage

ID Severity Summary Status

16 add can overflow

17 Typographical issues

RESOLVED

INFO RESOLVED

LOW

ID Severity Summary Status

18 Typographical issuesINFO RESOLVED

ID Severity Summary Status

19 Adjustment of LTV can make users vulnerable to liquidation

20 Lack of reasonable liquidationDiscount limit

21 getAssets can run out of gas

22 Gas optimizations

23 Typographical issues

INFO

INFO

ACKNOWLEDGED

RESOLVED

ACKNOWLEDGED

MEDIUM

MEDIUM

LOW

RESOLVED

RESOLVED

Page of 15 183 Paladin Blockchain Security

1.3.13	 Overseer

1.3.14	 Treasury

1.3.15	 DynamicInterestRateModel

1.3.16	 FixedInterestRateModel

ID Severity Summary Status

24 shutdown functionality might run out of gas

25 Pausing functionality might lead to undesired side-effects

26 Typographical issues

RESOLVEDLOW

RESOLVED

MEDIUM

INFO

RESOLVED

ID Severity Summary Status

27 Typographical issuesINFO RESOLVED

ID Severity Summary Status

28 Interest rate mechanism is manipulatable due to utilization rate
changes not always triggering an interest rate indexation

29 Typographical issues

PARTIAL

RESOLVEDINFO

MEDIUM

ID Severity Summary Status

30 Update of interest rate will change borrowIndex retroactively

31 _rate can be set arbitrarily high

32 Typographical issues

RESOLVED

MEDIUM

INFO RESOLVED

RESOLVED

LOW

Page of 16 183 Paladin Blockchain Security

1.3.17	 Liquidator

ID Severity Summary Status

33 liquidateVaultToken function is fundamentally flawed, preventing
any amUSDT token liquidations from occurring

34 Very large positions can become hard/impossible to liquidate

35 Liquidation of vaultToken can be prevented

36 Profit of vaultToken liquidation can be reduced

37 Allowing for unprofitable redemptions of vaultTokens is considered
a risk

38 Liquidation will not work if _baseAsset is not a USD stablecoin

39 Missing safeguard within transferFees

40 Gas optimizations

41 Typographical issues

42 Slippage calculation is completely useless

PARTIAL

RESOLVED

INFO

ACKNOWLEDGED

RESOLVED
LOW

LOW

INFO

RESOLVED

HIGH

HIGH

LOW

LOW

ACKNOWLEDGED

RESOLVED

INFO

RESOLVED

ACKNOWLEDGED

LOW

ACKNOWLEDGED

Page of 17 183 Paladin Blockchain Security

1.3.18	 Market

ID Severity Summary Status

43 Stablecoin depositor vault can be fully drained if an asset with 20
decimals or more is ever added as collateral due to an overflow

vulnerability in the borrowing limit calculation

44 ensureHealthyAccount returns true for a score of 100

45 Borrowing can result in liquidation

46 Distributing interest only at the end of the loan can lead to
misalignment for long loan durations and even exploitation to

reduce interest paid in certain edge cases

47 Automatic reduction of the repay amount to outstanding liabilities
could cause issues for integrating applications who are unaware of
this

48 Governance risk: _borrowingFee lacks upper limit

49 Market state is calculated if no time has elapsed

50 Gas optimizations

51 Typographical issues

PARTIAL

LOW

LOW

RESOLVED

RESOLVEDHIGH

LOW ACKNOWLEDGED

ACKNOWLEDGED

INFO

INFO

LOW

RESOLVED

INFO

RESOLVED

HIGH

PARTIAL

RESOLVED

Page of 18 183 Paladin Blockchain Security

1.3.19	 MarketLiquidation

1.3.20	 MarketStorage

1.3.21	 DepositorVaultMarketplaceAdapter

ID Severity Summary Status

52 findLargestPosition does not include collateralFactor

53 calculateLiquidation potentially compares values in different
denominations

54 Funds are withdrawn directly from the Custodian instead of the
PortfolioBroker

55 requireUnhealthyAccount passes if liabilities are zero

56 Highest position is potentially truncated

57 Potential mismatch between maxAmount and liquidationSupply

58 Incorrect decimal denomination for minimum comparison

59 Small positions can never be fully liquidated

60 Liquidation functions lack a mininimum received slippage check for
manual liquidations

60 Typographical issues

ACKNOWLEDGED

ACKNOWLEDGED

LOW

PARTIAL

LOW

LOW

LOW

RESOLVED

RESOLVED

LOW

ACKNOWLEDGED

LOW

INFO

LOW

ACKNOWLEDGED

RESOLVED

LOW

RESOLVED

RESOLVED

LOW

ID Severity Summary Status

61 Typographical issues RESOLVEDINFO

ID Severity Summary Status

62 normalize can truncate price if vaultToken has less than 8
decimals

63 Typographical issuesINFO RESOLVED

RESOLVED
LOW

Page of 19 183 Paladin Blockchain Security

1.3.22	 Marketplace

1.3.23	 SpotMarketMarketplaceAdapter

ID Severity Summary Status

64 The brokerage functions of the marketplace contain faulty internal
states, allowing for any reentrant behavior to potentially exploit the

user and force liquidation

65 borrowFeeAmount is not accounted into slippage

66 Healthy state is not guaranteed

67 available calculation does not work for baseAssets that are not
USDT

68 Estimation of maxAmount does not account for fee nor slippage

69 Invalid logic if context.amount < context.maxAmount

70 sell does not return the total amountOut; instead, it returns the
amountOut after the liabilities repaid have been deducted

71 Missing check that marketplaceAdapter is set when buying from
your portfolio

72 Gas optimizations

73 Typographical issues

RESOLVED

RESOLVED

MEDIUM

ACKNOWLEDGED

INFO

LOW

HIGH

RESOLVED

RESOLVED

INFO

MEDIUM

RESOLVED

LOW

RESOLVED

RESOLVEDLOW

LOW

INFO

RESOLVED

RESOLVED

ID Severity Summary Status

74 minAmountOut calculation for buy function normalizes incorrect
decimals

75 Inefficient architecture

76 Truncation of decimals will result in price decrease

77 Slippage application will result in higher slippage than expected

78 Hardcoded swapFee of 0.3%

79 Typographical issues

MEDIUM

MEDIUM

RESOLVED

RESOLVED

ACKNOWLEDGED

INFO

RESOLVED

MEDIUM

HIGH

RESOLVED

ACKNOWLEDGEDLOW

Page of 20 183 Paladin Blockchain Security

1.3.24	 ChainlinkAggregatorPriceOracle

1.3.25	 DepositorVaultTokenPriceOracle

1.3.26	 FallbackPriceOracle

ID Severity Summary Status

80 Typographical issues RESOLVEDINFO

ID Severity Summary Status

81 Lack of staleness check for denominator oracle

82 DepositorVaultTokenPriceOracle reports an incorrect price if the
underlying token has a different number of decimals compared

to the vault token

83 Price is truncated

84 Gas optimizations

85 Typographical issues

LOW

ACKNOWLEDGED

INFO

LOW

RESOLVED

LOW

INFO

RESOLVED

RESOLVED

ACKNOWLEDGED

ID Severity Summary Status

86 Oracle can be made magnitudes more secure within the current
design by allowing the price to only slowly go up but go down
instantly

87 Staleness protection not guaranteed

88 isStale could theoretically underflow and revert

89 Gas optimizations

90 Typographical issues RESOLVED

ACKNOWLEDGED

INFO

LOW

RESOLVED

RESOLVED

ACKNOWLEDGED

INFO

INFO

LOW

Page of 21 183 Paladin Blockchain Security

1.3.27	 Custodian

1.3.28	 CustodianMigrator

No issues found.

1.3.29	 Portfolio

ID Severity Summary Status

91 Checks-effects-interactions pattern is not adhered to, allows for the
Portfolio maxSupply check to be bypassed through a reentrancy

exploit

92 Typographical issues

93 Gas optimizations

RESOLVED

PARTIAL

INFO

INFO

ACKNOWLEDGED

LOW

ID Severity Summary Status

94 ETH liquidation is impossible due to special handling of ETH
compared to WETH

95 Custodian is called before share amount is updated

96 Missing non-zero modifier

97 Off-by-one error within supplyTo

98 Inconsistency between share increase/decrease

99 Additional layer of security: USD based caps

100 Typographical issues

101 Gas optimizations

HIGH

RESOLVED

RESOLVED

ACKNOWLEDGED

INFO

RESOLVED

RESOLVED

RESOLVEDLOW

LOW

MEDIUM

LOW

INFO

RESOLVED

INFO

RESOLVED

Page of 22 183 Paladin Blockchain Security

1.3.30	 PortfolioStorage

1.3.31	 AdminAccessControl

1.3.32	 AuthorizedAccessControl

No issues found.

1.3.33	 AccessControlList

No issues found.

1.3.34	 AmbitToken

ID Severity Summary Status

102 Gas optimizationsINFO RESOLVED

ID Severity Summary Status

103 Unused importINFO RESOLVED

ID Severity Summary Status

104 Typographical issuesINFO ACKNOWLEDGED

Page of 23 183 Paladin Blockchain Security

1.3.35	 Pausable

No issues found.

1.3.36	 Sweepable

1.3.37	 DepositorVault

ID Severity Summary Status

105 Sweeping Ether to treasury might not work for treasuries that
execute logic on their fallback

106 Typographical issue

107 sweepETH is payable

RESOLVED

RESOLVED

INFO

INFO

RESOLVEDLOW

ID Severity Summary Status

108 DoS exploit: Several functions including getAvailableBalance can
be exploited when utilization is 100% by withdrawing manually

sent USDT, causing these functions to brick and revert due to an
underflow vulnerability

109 External users can manipulate the utilization ratio

110 Users can potentially lose tokens during repay

111 Flashloan fee will be stuck in the contract

112 Reserve logic is redundant and can be circumvented

113 Potential reentrancy attack due to un-updated contract state

114 Change of borrowLimit will change market state retroactively

115 Architectural flaw: Initial positions will not receive any yield

116 Uncapped flashloan fee

117 borrowLimit can be set to be less than liabilities

118 getBorrowerUtilization will return 1e27 for limit of zero

119 Lack of checks-effects-interactions allows the maxSupply check to
be bypassed if the token is vulnerable to re-entrancy

ACKNOWLEDGED

LOW

PARTIAL

MEDIUM

ACKNOWLEDGED

MEDIUM

RESOLVED

MEDIUM

HIGH RESOLVED

LOW

HIGH

RESOLVED

HIGH

MEDIUM

RESOLVED

RESOLVED

ACKNOWLEDGED

LOW

RESOLVED

ACKNOWLEDGED

LOW RESOLVED

MEDIUM

Page of 24 183 Paladin Blockchain Security

1.3.38	 DepositorVaultMigrator

1.3.39	 DepositorVaultStorage

No issues found.

1.3.40	 DepositorVaultToken

No issues found.

120 The reserve assets cannot be flashloaned

121 Gas optimizations

122 Typographical issues

RESOLVED

INFO

LOW

INFO RESOLVED

RESOLVED

ID Severity Summary Status

123 Yield will be lost with new vault

124 Several variables are unset after deployment

125 Swept funds are sent to the wrong vault

126 Typographical issues

127 Vendor and Purchaser are still granted rights

RESOLVED

RESOLVED

INFO RESOLVED

MEDIUM

MEDIUM

HIGH RESOLVED

RESOLVED

INFO

Page of 25 183 Paladin Blockchain Security

1.3.41	 LinearDistributedYieldVault

1.3.42	 Vault

1.3.43	 Flashlender

No issues found. 

ID Severity Summary Status

128 Non-configurable _distributionWindow may backfire in the future

129 The distribution rate is counter-intuitively non-linear depending on
when distributeYield gets called

130 Lack of checks-effects-interactions

131 Gas optimizations

132 Typographical issues

RESOLVED

INFO RESOLVED

LOW ACKNOWLEDGED

INFO

INFO

LOW

ACKNOWLEDGED

ACKNOWLEDGED

ID Severity Summary Status

133 Share distribution can be manipulated by first depositor

134 Gas optimizations

RESOLVED

RESOLVEDINFO

HIGH

Page of 26 183 Paladin Blockchain Security

2	 	 Findings

2.1	 Global Issues

The issues listed in this section apply to the protocol as a whole. Please read
through them carefully and take care to apply the fixes across the relevant
contracts.

Page of 27 183 Global Issues Paladin Blockchain Security

2.1.1	 Issues & Recommendations

Issue #01 Governance risk: Change of _interestRateModel can break
contract

Severity

Description The admin can change _interestRateModel. This address is called
within calculateMarketState and can therefore DoS several
functionalities, including accrueLiabilities.

Recommendation Consider keeping the admin address strictly under a multi-signature
wallet with KYC-ed participants.

Resolution ACKNOWLEDGED

GOVERNANCE

Issue #02 General assumption of baseAsset being worth 1 USD

Severity

Description Throughout the codebase, there are several value comparisons
between the borrowLimit and the current liabilities, where the
borrowLimit is always denominated in USD with 8 -> 18 decimals.

This will result in issues if the baseAsset should ever be worth less
than 1 USD resulting in potentially undesirable liquidations, since
the debt position is practically worth less than 1 USD but can still be
liquidated.

Recommendation Consider keeping this scenario and mind and brain-storming
potential emergency scenarios in case such a black-swan event
occurs.

Resolution

HIGH SEVERITY

ACKNOWLEDGED

Page of 28 183 Global Issues Paladin Blockchain Security

Issue #03 Governance has full control over all funds in the ecosystem

Severity

Description The whole architecture is built in such a manner that governance
can affect different state transitions, apply changes to important
state variables which can result in a loss of funds in various different
ways. Furthermore, many of the open approvals can be drained due
to broker functions directly pulling funds from the accounts.

Users should therefore be extremely diligent in only approving the
number of coins that they actually plan to use within the system, as
open approvals can and will be stolen in case the system becomes
compromised (keys get stolen).

Update: In the resolution round, several contracts have become
migrate-able, granting admins several other privileges that can
potentially lead to loss of user funds.

Recommendation Consider only using multi-signature wallets with KYC-ed
participants for privileged roles within the whole architecture.

Consider redesigning the safeTransferFrom calls within broker and
Custodian to pull from msg.sender instead of the original accounts.
This requires users to explicitly approve the broker they trust
instead of having to approve potentially malicious brokers that can
pull from their account.

Resolution ACKNOWLEDGED

HIGH SEVERITY

Page of 29 183 Global Issues Paladin Blockchain Security

Issue #04 Lack of staleness check when using Chainlink oracle

Severity

Description There is a lack of staleness check whenever the Chainlink oracle is
used. This can lead to incorrect return values, resulting in a loss of
funds.

Recommendation Consider implementing a staleness check — this can also be done
directly in the ChainlinkAggregatorPriceOracle contract instead
of on every single implementation.

Resolution

LOW SEVERITY

RESOLVED

Issue #05 Lack of upper limit in portfolio assets

Severity

Description The contract has several sections which potentially loop over all
existing assets. There is a risk that these loops run out of gas,
potentially preventing liquidations and DoS’ing further
functionalities.

Recommendation Consider setting a reasonable upper limit to how many assets can
be added.

Resolution

However, a bug was introduced — once MAX_PORTFOLIO_ASSETS is
reached, there is no way to supply further assets.

RESOLVED

LOW SEVERITY

Page of 30 183 Global Issues Paladin Blockchain Security

Issue #06 Pausing and unpausing can prevent/enable liquidations

Severity

Location function repay(uint256 amount) external whenNotPaused

function repayOutstandingLiabilities() external

whenNotPaused

Description The repay and repayOutstandingLiabilities functions have a
whenNotPaused modifier in the vault and market contracts that will
prevent users from repaying their liabilities if set to paused.

Recommendation Consider removing the whenNotPaused modifier of repay() and
repayOutstandingLiabilities().

Resolution

LOW SEVERITY

Repayments are now allowed when the project is paused.

RESOLVED

Issue #07 Protocol does not work with tokens that have a fee on transfer

Severity

Description There are several sections within the protocol architecture that will
not work with tokens with a fee on transfer — this will break the
whole system.

Recommendation Consider not using such tokens.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 31 183 Global Issues Paladin Blockchain Security

Issue #08 Sensitive structure for privileges

Severity

Description Majority of the contracts inherit either the AdminAccessControl or
AuthorizedAccessControl contract, whereas the deployer will
always get the default admin role granted.

It is of utmost importance that the setting for the privileged
addresses is done carefully, otherwise functionalities might break or
unprivileged third-parties can execute sensitive calls and storage
variable changes.

Recommendation Consider following Permissions.md with utmost care and
eventually revoking the default admin role from the contract
deployer.

Resolution

A new governance mechanism has been implemented.

RESOLVED

INFORMATIONAL

Page of 32 183 Global Issues Paladin Blockchain Security

Issue #09 Users can supply and withdraw in the same block

Severity

Description As supplying and withdrawing directly are not functionalities that
users with good intentions would use together, rather they would be
used for malicious behavior, it might be desired to prevent users
from supplying and withdrawing in the same block.

Recommendation Consider adding a cooldown period between the supply and
withdraw functions. However, this requires careful testing with all
other functionalities in mind, to ensure the architecture still works
as expected.

This might be considered inadequate, even internally within the
Paladin team such solutions raise strong doubts. A stronger solution
may be to be extremely careful with privileges granted to the user.

Since checks-effects-interactions is not adhered to everywhere, we
strongly suggest re-writing the codebase to adhere to checks-
effects-interactions to prevent reentrancy exploits (even though the
client indicates no reentrancy tokens/routes will be supported). If
not, adding a global reentrancy guard to prevent reentrancy risks
can be considered adequate as well.

Additionally, taking extreme care that flash-attacks such as interest
rate manipulation are simply not possible is also desired. This must
be done on a case-by-case basis.

Resolution

INFORMATIONAL

RESOLVED

Page of 33 183 Global Issues Paladin Blockchain Security

2.2	 Libraries/AddressRegistryExtensions

AddressRegistryExtensions is a simple registry contract that stores different
variables as bytes32 hash. This library exposes several getter functions which
internally call the getAddress functionality using a valid hash.

It is used in various contracts throughout the codebase whenever the
AddressRegistry contract is intended to be called.

2.2.1	 Issues & Recommendations

Issue #10 Typographical issues

Severity

Description L16 

import { ILiquidator } from "../interfaces/market/

ILiquidator.sol";

This import is unused and can therefore be removed

L40

function getAmbitToken(IAddressRegistry self)

internal view returns (address) {

It may make sense to return the token interface instead.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 34 183 AddressRegistryExtensions Paladin Blockchain Security

2.3	 Libraries/Errors

Errors is a simple registry of all custom revert errors.

2.3.1	 Issues & Recommendations

Issue #11 Unused custom errors

Severity

Description L30 

error Marketplace_StalePrice(uint age); 

 

L31

error Marketplace_WithdrawAmountTooLarge(uint256 amount,

uint256 shares, uint256 totalShares);

L63

error DynamicInterestRateModel_PrecisionTooLarge(uint256

decimals);

Description The contract contains errors which are unused within the
architecture.

Recommendation Consider either removing or using these errors.

Resolution

INFORMATIONAL

However, with the introduction of new errors, the following error
remains unused: Portfolio_SlippageExceeded

RESOLVED

Page of 35 183 Errors Paladin Blockchain Security

2.4	 Libraries/Fees

Fees is responsible for the fee calculation based on a given amount and bps,
including a minimum comparison with the maxAmount of the Parameters struct. This
library is used throughout the whole architecture.

2.4.1	 Issues & Recommendations

Issue #12 Lack of validation within used contracts

Severity

Description Wherever the Fees.Parameters value is used and can be set, there
is no upper limit for neither bps nor maxAmount. This can lead to
undesired side-effects if these values are accidentally incorrectly
set.

Recommendation Consider implementing a reasonable upper limit wherever this
struct is used.

Resolution

LOW SEVERITY

Within the Liquidator contract, it is ensured that both fees
together cannot be larger than 100%, however, this still seems
unreasonable in our opinion.

PARTIALLY RESOLVED

Page of 36 183 Fees Paladin Blockchain Security

2.5	 Libraries/InterestMath

InterestMath is used within the Market contract with the task of calculating the
correct updated borrowIndex as well as calculating user liabilities based on the
current borrowIndex.

The increase of borrowIndex depends on the time elapsed since the last update as
well as the current rate, which is handled within the DynamicInterestRateModel.

2.5.2	 Issues & Recommendations

Issue #13 Typographical issues

Severity

Description “elapsed” is misspelled as “ellapsed” throughout the contract.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 37 183 InterestMath Paladin Blockchain Security

2.6	 Libraries/Normalizer

Normalizer is used throughout the project’s contracts and is used to convert
amounts from their origin decimals to specific destination decimals. For example, if
the number 1000 was converted from 3 decimals to 1, it would return 10.

Page of 38 183 Normalizer Paladin Blockchain Security

2.6.1	 Issues & Recommendations

Issue #14 Decimals will be truncated when converting to lower decimals

Severity

Description Whenever an amount is converted to a lower decimal value, the
decimals will be truncated.

When converting 1999999999999999999 tokens to an amount with
6 decimals, the result will be 1999999 as the leftover decimals will
be truncated, effectively decreasing the value.

Recommendation Consider carefully inspecting all sections where this can happen,
especially for future deployments on other chains where USDT is 6
decimals.

Consider if this will then become an issue in practice.

Resolution

There is still truncation but in the scenario of normalizing to lower
decimals, the mathematical calculation rounds up. During our
assessment, we could not find an exploit which occurs due to
rounding change, however, since a resolution round is a time-boxed
review of the changes, we encourage the Ambit development team
to execute further tests, ensuring that there can be no edge-cases
due to rounding up for normalizing to lower decimals. The
developer indicated that the rounding will be reversed in a newer
commit. This will be validated once the commit has been provided.

Resolution 2:

The rounding change has been reversed.

ACKNOWLEDGED

LOW SEVERITY

Page of 39 183 Normalizer Paladin Blockchain Security

2.7	 Libraries/PercentageMath

PercentageMath is responsible for calculating the percentage of an amount based
on the provided basis points as well as the smaller value out of two values. It is used
throughout the whole project.

2.7.1	 Issues & Recommendations

Issue #15 Typographical issues

Severity

Description L12

BPS public constant ONE_HUNDRED_BPS = BPS.wrap(10000);

This should be ONE_HUNDRED_PERCENT since 100 bps is 1%, making
the current variable name a misnomer.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 40 183 PercentageMath Paladin Blockchain Security

2.8	 Libraries/PortfolioAssetExtensions

PortfolioAssetExtensions is used throughout the architecture with the
functionality to fetch token addresses out of an array of PortfolioAsset structs.
This token address is then used in most contracts to fetch the corresponding Asset
struct.

2.8.1	 Issues & Recommendations

No issues found. 

Page of 41 183 PortfolioAssetExtensions Paladin Blockchain Security

2.9	 Libraries/RayMath

RayMath is a customized version of AAVE’s WadRayMath library (https://github.com/
aave/aave-v3-core/blob/master/contracts/protocol/libraries/math/
WadRayMath.sol), solely using the math calculations for WAD with implemented
custom reverts and gas savings.

Page of 42 183 RayMath Paladin Blockchain Security

https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/math/WadRayMath.sol
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/math/WadRayMath.sol
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/math/WadRayMath.sol
https://github.com/aave/aave-v3-core/blob/master/contracts/protocol/libraries/math/WadRayMath.sol

2.9.1	 Issues & Recommendations

Issue #16 add can overflow

Severity

Description The add operation, unlike all other operations, does not have any
overflow protection. It will therefore silently overflow which is
inconsistent with the rest of the operations which do revert on
overflow.

Recommendation Consider simply using a high-level add which is protected against
overflow.

Resolution

LOW SEVERITY

This contract has been removed completely.

RESOLVED

Page of 43 183 RayMath Paladin Blockchain Security

Issue #17 Typographical issues

Severity

Description L18

return Ray.wrap(1e27);

The literal 1e27 is already defined as the constant RAY, consider re-
using it.

L44

if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b,

2)), RAY))))) {

iszero(iszero(does not appear to serve any purpose here.
However, since as long as the optimizer is enabled, this gets
optimized away, so it is not that big of a deal.

L52

/// @dev this peforms a POW operation using the algorithim

defined here;

This comment has two typos. The correct spelling should be
“performs” and “algorithm”.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

This contract has been removed completely.

RESOLVED

Page of 44 183 RayMath Paladin Blockchain Security

2.10	 Libraries/USDMath

USDMath is responsible for safely converting origin values with 8 decimals to a value
with target decimals.

2.10.1	 Issues & Recommendations

Issue #18 Typographical issues

Severity

Description L7

/// to make the code more expicit for when a function deals

with a USD value.

“expicit” should be spelled as “explicit”.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 45 183 USDMath Paladin Blockchain Security

2.11	 Core/AddressRegistry

AddressRegistry is a simple registry contract which allows the admin to assign
addresses to keys. It is essentially a global key-value database for the rest of the
Ambit system. A key can only have one address assigned but different keys can link
to the same address.

This contract is deployed externally and used as a global registry for the whole
architecture. It is called by the AddressRegistryExtensions library using a valid
hash.

2.11.1	 Privileged Functions

• setAddress

• renounceRole [role bearer]

• grantRole

• revokeRole

2.11.2	 Issues & Recommendations

No issues found.

Page of 46 183 AddressRegistry Paladin Blockchain Security

2.12	 Core/AssetStorage

AssetStorage is an externally deployed registry contract which keeps track of
assets and their corresponding values such as:

- tokenAddress

- custodian

- priceOracle

- marketplaceAdapter

- maxSupply

- maxLTV

- liquidationDiscount

Any authorized address can add and change these values to/for any asset.

2.12.1	 Privileged Functions

• setAsset

Page of 47 183 AssetStorage Paladin Blockchain Security

2.12.2	 Issues & Recommendations

Issue #19 Adjustment of LTV can make users vulnerable to liquidation

Severity

Description The setAsset function allows all parameters to be modified,
including the LTV of an asset. Whenever the LTV is changed, this
will immediately impact the borrowLimit of all users, eventually
leading to unexpected liquidations.

Recommendation Consider implementing a safeguard for this mechanism — i.e. a set
and claim mechanism with a specific timestamp in between to
prevent any accidental change.

It is also mandatory to communicate such a change with the
community in a timely manner.

Resolution

The client has communicated they will be extremely careful with
this. It can only be modified by the admins instead of authorized
addresses.

RESOLVED

MEDIUM SEVERITY

Page of 48 183 AssetStorage Paladin Blockchain Security

Issue #20 Lack of reasonable liquidationDiscount limit

Severity

Description Lending protocols in general are always vulnerable to bad debt,
which is the state where the borrower’s debt position becomes
larger than the collateral position, resulting in a disincentivization of
paying back the loan.

To prevent this situation, positions can get liquidated once they
become unhealthy, where not only the corresponding collateral but
also a premium will be sent to the liquidator.

However, if the position is already in a very bad state, i.e. the
borrowed position is 95% of the collateral and the premium is 6%,
the position can never be fully liquidated anymore since there is not
enough collateral to pay out the premium to the liquidator.

Moreover, a too large liquidationDiscount will make the position
even more unhealthy.

Recommendation Consider setting a reasonable upper limit for liquidationDiscount
to receive a healthy state after liquidation as well as to keep
liquidations valid as long as possible.

Resolution

MEDIUM SEVERITY

ACKNOWLEDGED

Issue #21 getAssets can run out of gas

Severity

Description The function fetches the Asset property from storage for every
asset which was set. This can potentially consume a lot of gas if
used by an external contract.

Recommendation Consider implementing a reasonable upper limit for the _count
variable.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 49 183 AssetStorage Paladin Blockchain Security

Issue #22 Gas optimizations

Severity

Description L20 and 23

mapping (uint16 => address) private _indexes;

uint16 private _count;

Using uint16 is redundant here and it might likely even increase gas
costs. Consider moving to uint256. Note that the for-loop at line
118 must be adjusted as well.

——

It appears like the Asset struct is not optimally packed: The two
BPS values can be moved under an address to save a full storage
slot.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

RESOLVED

Page of 50 183 AssetStorage Paladin Blockchain Security

Issue #23 Typographical issues

Severity

Description L19

// stores the indicies for the assets such that we can return

all

This should say “indices” instead.

L29

modifier requireNonZeroAddress(address addr, string memory

name) {

This modifier appears unused.

L63

_indexes[_count++] = asset.token;

It may make sense to also do a non-zero check on the token as to
ensure that indices do not point to the default storage value which is
all zeros.

L99

/// SLOAD that we can avoid by having the calling functions

asset that they have the data they needed.

“asset” should be “assert” instead.

L100

function getAsset(address token, uint16 mask) public view

returns (IAssetStorage.Asset memory) {

It should be noted that mask constants are presently uint8 which
does not make much sense given that the mask is uint16. Consider
marking all constants as uint16 instead.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 51 183 AssetStorage Paladin Blockchain Security

2.13	 Governance/Overseer

Overseer is an emergency contract which allows the admin to shutdown the whole
protocol by pausing the following contracts:

- DepositorVault

- Portfolio

- Market

- Liquidation

- Custodian

2.13.1	 Privileged Functions

• shutdown

Page of 52 183 Overseer Paladin Blockchain Security

2.13.2	 Issues & Recommendations

Issue #24 shutdown functionality might run out of gas

Severity

Description Within the shutdown call, all registered assets are being fetched
from the AssetStorage and then their corresponding custodian is
paused.

Under rare circumstances, if the amount of assets is very large, this
can run out of gas, resulting in a DoS of the shutdown functionality.

There are also other cases which might cause a pause call to revert
— most notably when the Overseer does not have the ADMIN_ROLE
for any of these contracts, and also if any of these contracts are
already paused.

Recommendation Consider limiting the amount of assets that can be registered to a
reasonable upper value.

More importantly, consider checking if all of the contracts are
unpaused with an if-statement before pausing them. Next, consider
adding a second helper function:

function shutdown(IPausable c) external onlyAdmin {

 c.pause();

 emit Paused(c);

}

Resolution

MEDIUM SEVERITY

Custodians will not be paused anymore, there implicit effects of not
pausing custodians, such as other authorized addresses besides the
Portfolio contract being able to withdraw, must be considered.

We recommend pausing operations to be done extremely carefully
and recommend carefully taking into account that custodians now
need to be paused one by one, or by a new function that aggregates
the pausing.

RESOLVED

Page of 53 183 Overseer Paladin Blockchain Security

Issue #25 Pausing functionality might lead to undesired side-effects

Severity

Description Whenever the shutdown function is being called, supplying into the
Portfolio, repaying borrowed funds and liquidations will also pause.

This can have the following risks:

- The occurrence of bad debt due to paused liquidation
functionality

- Immediate liquidations after unpausing

Recommendation Consider still allowing emergency liquidations as well as
implementing a transition period where users can repay their debt
or increase the collateral.

Resolution

Users can still repay their debt within the Market contract.

We recommend that this is carefully considered as there might be
instances where pausing this behavior is still desired. In this case, a
proxy upgrade is currently necessary.

RESOLVED

LOW SEVERITY

Issue #26 Typographical issues

Severity

Description L14

IAddressRegistry private immutable _registry;

_registry should be made public to allow for users and reviewers
to easily inspect it in the explorer.

——

shutdown should emit an event.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 54 183 Overseer Paladin Blockchain Security

2.14	 Governance/Treasury

Treasury is a simple token/ether storage contract with an ERC20 and ETH transfer
functionality. It also includes a direct Ambit token burn functionality for Ambit
tokens within the contract.

The treasury will receive funds during the following actions:

- During a liquidation mechanism, it will receive a share of the profits

- During a borrow action, it will receive a pro-rata share based on the total borrow
amount

- During AmbitToken deployment, an initial supply of 100 000 000 tokens are
being minted to the treasury

- During a contract sweep, the treasury will receive ERC20 tokens / Ether

2.14.1	 Privileged Functions

• transfer

• transferETH

• burnAmbit

Page of 55 183 Treasury Paladin Blockchain Security

2.14.2	 Issues & Recommendations

Issue #27 Typographical issues

Severity

Description L21

IAddressRegistry private immutable _registry;

_registry should be made public to allow for users and reviewers
to easily inspect it in the explorer.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 56 183 Treasury Paladin Blockchain Security

2.15	 Market/DynamicInterestRateModel

DynamicInterestRateModel is a simple helper contract responsible for calculating
the current interest rate based on the _baseRate, current utilization ratio and
multiplier.

A _baseRate of 1e27 represents 100% funding fee per year, while the multiplier
reflects the percentage used as funding fee based on the utilization ratio. Therefore,
a multiplier of 1e27 and a utilization ratio of 10% will represent an additional
funding fee of 10% per year.

Page of 57 183 DynamicInterestRateModel Paladin Blockchain Security

2.15.1	 Issues & Recommendations

Issue #28 Interest rate mechanism is manipulatable due to utilization rate
changes not always triggering an interest rate indexation

Severity

Description The DynamicInterestRateModel bases its interest rate on the
utilization of the depositor’s vault supply (i.e. the percentage of this
supply which is borrowed at any time). The interest rate increases
together with the utilization rate.

However, this utilization rate is actually only fetched whenever users
borrow or repay from the vault, not when users supply into or
withdraw from the vault. This is an issue as the latter actions also
change the utilization rate. This means that the new rate will be
used retroactively whenever users supply or withdraw to the
depositor vault.

A specific exploit scenario opens up because of this, for example:

1. Allice opens a huge borrow position on Ambit, and utilization
rate is nearly 100%

2. Whenever users take actions that would index the borrow index
with a very large number due to the high utilization rate rate,
Alice frontruns them:

	 2.1 Flashloan the full balance of a free flashloan USDT pool

	 2.2 Deposit the USDT into the depositor vault

	 2.3 Accrue the market liabilities (index the interest)

	 2.4 Withdraw the flashloaned USDT

	 2.5 Repay the flashloan

In this example, the actual utilization rate is 100% and interest
should be huge. However, the interest gets indexed as if the
utilization rate is only 10% for example. It should be noted that
suppliers can also manipulate the interest rate upwards by flash
withdrawing their deposits!

MEDIUM SEVERITY

Page of 58 183 DynamicInterestRateModel Paladin Blockchain Security

Recommendation Consider indexing the interest rate before all utilization rate
changes: this includes deposits, withdrawals and borrow limit
adjustments.

Resolution

Protection for same block deposits/withdrawals have been added.
Moreover, future changes will make the interest rate less sensitive
to the state of the depositor vault.

The client has finally indicated they will monitor this carefully.

PARTIALLY RESOLVED

Issue #29 Typographical issues

Severity

Description L5 and 8

import { IERC20Metadata } from "../../dependencies/

@openzeppelin/contracts/token/ERC20/extensions/

IERC20Metadata.sol";

import { Errors } from "../../libraries/Errors.sol";

These imports appear unused.

L19, 21 and 23

IAddressRegistry private immutable _registry;

Ray private immutable _multiplier;

Ray private immutable _baseRate;

These variables should be marked as public to allow them to be
viewed from within the explorer.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 59 183 DynamicInterestRateModel Paladin Blockchain Security

2.16	 Market/FixedInterestRateModel

FixedInterestRateModel is similar to the DynamicInterestRateModel — a helper
contract which is called by the Market contract to return the current interest rate.
Unlike the latter model, this contract uses a static interest rate which can be
changed at any point by the owner and is not affected by the utilization ratio.

2.16.1	 Privileged Functions

• setRate

• transferOwnership

• renounceOwnership

Page of 60 183 FixedInterestRateModel Paladin Blockchain Security

2.16.2	 Issues & Recommendations

Issue #30 Update of interest rate will change borrowIndex retroactively

Severity

Description Whenever the setRate function is called, _rate will be changed
while the market state is not updated beforehand.

This will change the borrowIndex retroactively since the last time
the market state was updated, resulting in potentially increased/
decreased liabilities which can also lead to unexpected liquidations.

Recommendation Consider calling accrueLiabilities on the Market contract before
the rate is being updated - this can be done programmatically within
the code.

Resolution

This variable cannot be changed anymore.

RESOLVED

MEDIUM SEVERITY

Issue #31 _rate can be set arbitrarily high

Severity

Description Since the _rate of 1e27 represents 100% funding fees per year on
the borrowing position, it might be desired to implement a
reasonable upper limit on this variable.

Recommendation Consider implementing a reasonable upper limit on the setRate
function.

Resolution

LOW SEVERITY

A check has been implemented, and the logic has been refactored
such that 100% is 1e18 instead of 1e27.

RESOLVED

Page of 61 183 FixedInterestRateModel Paladin Blockchain Security

Issue #32 Typographical issues

Severity

Description L6 and 7

import { Ray, RayMath } from "../../libraries/RayMath.sol";

import { IMarket } from "../../interfaces/market/

IMarket.sol";

These imports appear unused.

L18

function setRate(Ray rate) external onlyOwner

setRate should emit an event.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 62 183 FixedInterestRateModel Paladin Blockchain Security

2.17	 Market/Liquidator

Liquidator is the entry point for every liquidation call. Any user can call the
liquidation functionality to liquidate unhealthy accounts. Unlike traditional
liquidation mechanisms, the Liquidator contract solely handles all funds necessary
for a liquidation, thus it is not necessary for a user to provide funds to liquidate
positions.

Once a position is successfully liquidated, the Liquidator will receive the
corresponding collateral, which opens the path for three different scenarios:

- The liquidator receives the baseAsset, no further actions are necessary.

- The liquidator receives the vaultToken and immediately redeems it on the
DepositorVault to receive the baseAsset.

- The liquidator receives an ERC20 token which is not the baseAsset and
immediately attempts to sell it on a secondary UniswapV2 exchange for the
baseAsset.

After the baseAsset is successfully received, the profit of the liquidation operation
is calculated and distributed to the treasury, caller and donated to the vault, based
on the configured fee.

In order to be able to liquidate positions, it is necessary for the Liquidator contract
to have sufficient funds for the repayment of an unhealthy position.

2.17.1	 Privileged Functions

• sweep

• sweepETH 

Page of 63 183 Liquidator Paladin Blockchain Security

2.17.2	 Issues & Recommendations

Issue #33 liquidateVaultToken is fundamentally flawed, preventing any
amUSDT token liquidations from occurring

Severity

Description Within liduidateVaultToken, the depositor tokens can get
liquidated if users supply them as collateral against which they
borrow USDT. However, due to a fundamental issue within this
function, the function will not work at all: 

L97 (and 105)

uint amountReceived = vault.redeem(minShares, minAmountOut,

msg.sender);

Within multiple sections of the function, the underlying redeemed
USDT is sent to the user instead of kept within this contract, causing
the contract to have insufficient USDT.

Furthermore, this function has excessive and misdirected rounding
due to the reliance on the exchangeRate function.

Recommendation Consider re-writing this function in a simplified manner. Ideally, do
not rely on exchangeRate() at all since using this function results in
potential rounding issues.

Resolution

The function has been simplified to the following steps:

a) Redeem the liquidated amount without the premium

b) Redeem the received premium

Additionally, the Liquidator is now the recipient of the tokens.

RESOLVED

HIGH SEVERITY

Page of 64 183 Liquidator Paladin Blockchain Security

Issue #34 Very large positions can become hard/impossible to liquidate

Severity

Description Generally speaking, for lending protocols it is necessary to liquidate
unhealthy positions as quickly as possible to prevent situations with
bad-debt (a very prominent example is the BNB-Chain Venus
liquidation). Usually, bots take care of the liquidations since they
can act more quickly than humans.

Ambit Finance implements two liquidation mechanisms:

a) The standard Liquidator liquidation

b) The emergency liquidation via an authorized address that
directly interacts with the MarketLiquidator

Whenever a position is liquidated, the collateral received is
swapped to USDT — mostly this will be an ERC20 token as
collateral.

SpotMarketMarketplaceAdapter is used for that purpose which
essentially is an aggregator for UniswapV2 routers. However, since
this adapter expects the slippage as parameter based on the
liquidationDiscount, the swap can revert due to two reasons:

a) The overall liquidation amount is too large, resulting in a huge
price impact.

b) A very sophisticated attacker can frontrun the swap,
manipulating the potentially used pools to differ more than 10%
from the Chainlink price, resulting in a revert of the function and
immediately backrunning the swap in an effort to not lose any
funds due to MEV. Basically a sandwich attack of the liquidation
functionality.

Both situations will result in a revert of the liquidation call, which
can then result in bad debt.

Recommendation Consider simply using a DEX aggregator such as 1inch for that
purpose.

Resolution

Ambit has indicated they will take this into account and manage
their protocol accordingly.

ACKNOWLEDGED

HIGH SEVERITY

Page of 65 183 Liquidator Paladin Blockchain Security

Issue #35 Liquidation of vaultToken can be prevented

Severity

Description Users can use the vaultToken they received for the USDT deposit
within the DepositorVault as collateral within the Portfolio
contract. If this position then becomes unhealthy, it will get
liquidated which includes a redemption of the vaultToken.
However, a malicious user can simply force the DepositorVault to
a state where no USDT is left, circumventing the reserve logic as
described within the Reserve logic is redundant and can be
circumvented issue (Issue #69), causing a DoS of the liquidation
call. (Or simply withdrawing staked USDT).

A user can therefore increase the borrow position using another
token. This can result in bad-debt since the highest USD value will
always be the vaultToken collateral, hence preventing the normal
liquidation flow.

This issue is rated as low severity since the MarketLiquidation
exposes an emergency liquidation function which allows the
liquidation of the non-vaultToken position.

Recommendation Consider ensuring that a sufficient amount of USDT will be always
within the vault, in an effort to cover such liquidation scenarios.

The scenario where a user a) deposits USDT with account 1 b)
borrows USDT up to the reserve limit with account 2 and c)
withdraws the USDT deposited in a) should also be prevented.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 66 183 Liquidator Paladin Blockchain Security

Issue #36 Profit of vaultToken liquidation can be reduced

Severity

Description During the redemption of the vaultToken, first the base amount is
redeemed and then the premium:

// redeem the remaining amount which should be considered the

profits

try vault.redeem(remaining, minAmountOut, msg.sender)

returns (uint received) {

 amountReceived += received;

} catch {

 // if for some reason the vault is empty we just keep

hold of the remaining supply

}

A user with a valid deposit position / collateral position can simply
frontrun this call, causing such a state in the DepositorVault that
only the base amount can be redeemed and not the profit,
effectively preventing any profit distribution.

Recommendation Consider if this can become an issue, if yes, consider implementing
a working reserve logic, which also applies to withdrawals within the
DepositorVault contract.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 67 183 Liquidator Paladin Blockchain Security

Issue #37 Allowing for unprofitable redemptions of vaultTokens is
considered a risk

Severity

Description There are no requirements that a vault token liquidation should be
profitable. This means that the Liquidator’s USDT balance, which
might be very sizable, can be used to cover the difference.

Recommendation Consider if this can become an issue, if yes, consider implementing
a working reserve logic which also applies to withdrawals within the
DepositorVault contract.

Resolution

The client has indicated they ensure that this liquidation is never
unprofitable. However, it is still not hardcoded in the code as a
negative profit check which does not revert is still present:

uint256 profit = amountReceived < totalAmount ? 0…

We recommend reverting in this case unless there is a specific
reason for it to remain this way.

In general, this issue will mostly re-introduce itself if logic is
adjusted over time, allowing for negative redemption (e.g.
redemption fees or loss bearing vaults). Also, the current code
seems to indicate that negative profit is possible which is overall bad
style. We therefore still recommend making the fix if there is no
downside.

RESOLVED

LOW SEVERITY

Page of 68 183 Liquidator Paladin Blockchain Security

Issue #38 Liquidation will not work if _baseAsset is not a USD stablecoin

Severity

Description The slippage is calculated using the Chainlink price of the ERC20
token. However, if a different token than USDT is used as
destination token, the slippage calculation will be flawed.

Recommendation Consider this whenever a token other than USDT is used. We should
also note that the whole audit was done under the assumption that
USDT would exclusively be used as a base asset, and this audit
should not be used to validate the trust for any system where this
changes.

Resolution ACKNOWLEDGED

LOW SEVERITY

Issue #39 Missing safeguard within transferFees

Severity

Description The transferFees function calculates the treasury and caller fee
based on the profit. However, there is no check that this fee is in fact
<= profit to ensure that the donation calculation does not underflow.

Recommendation Consider implementing such a safeguard.

Resolution

LOW SEVERITY

A check has been implemented to ensure that both fees cannot be
larger than the received profit.

RESOLVED

Page of 69 183 Liquidator Paladin Blockchain Security

Issue #40 Gas optimizations

Severity

Description _registry, _treasuryFee and _callerFee should be marked as
immutable to save on gas.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

RESOLVED

Issue #41 Typographical issues

Severity

Description _registry, _treasuryFee and _callerFee should be marked as
public to allow for explorer inspection by users.

IUniswapV2Router01, IMarketStorage, ICustodian,
IPortfolioStorage, Normalizer, USDMath,
AuthorizedAccessControl and MAX_SLIPPAGE_ALLOWED appear
unused. Consider removing them.

Recommendation Consider fixing these typographical issues.

Resolution

INFORMATIONAL

PARTIALLY RESOLVED

Page of 70 183 Liquidator Paladin Blockchain Security

Issue #42 Slippage calculation is completely redundant

Severity

Description Whenever the vaultToken is redeemed, the current exchange rate
of the DepositorVault contract is used to determine how much
USDT should be received as a minimum.

However, this logic is useless since the exchangeRate is fetched
within the same transaction where the redeem is done, thus it will
not be changed before the redeem happens and stays the same.

Moreover, generally speaking, the exchangeRate can only be
decreased under one special situation:

- No donation has been happened within the past six hours, and

- All shares have been redeemed

This situation will reset the exchangeRate to 1e18 and whenever
this situation is present, the second redeem with the slippage
calculation will always revert due to a lack of funds within the
DepositorVault:

// redeem the remaining amount which should be considered the

profits

try vault.redeem(remaining, minAmountOut, msg.sender)

returns (uint received) {

 amountReceived += received;

} catch {

 // if for some reason the vault is empty we just keep

hold of the remaining supply

}

In fact, theoretically, if that edge-case where the exchangeRate is
reset should have been covered, the exchangeRate should be
redetermined after the first redeem.

Furthermore, allowing for unprofitable liquidations due to this
slippage seems like a huge risk as unprofitable liquidations might
reduce the USDT balance in the liquidator, which could very well
lead to exploits to drain it! We extremely strongly urge the client to
not allow for any loss-bearing liquidations because of this reason.

Recommendation Consider removing this unnecessary logic.

Resolution

This has been removed.

RESOLVED

INFORMATIONAL

Page of 71 183 Liquidator Paladin Blockchain Security

2.18	 Market/Market

Market is one of the main contracts within the Ambit Finance ecosystem and allows
users to borrow and repay the underlying asset of the DepositorVault. Users can
borrow against their collateral positions from the Portfolio contract, up to a specific
percentage based on the maxLTV for the different collateral configurations. Over
time, users will pay interest on their borrowed position which can be either a
dynamic rate or a static rate based on the configuration of the contract.

During repayment, a distinction is made between the actual debt position and the
accrued interest on the position. While the debt position is repaid as usual, the
interest is donated to the DepositorVault contract, essentially generating a linear
yield for the staking positions inside the DepositorVault.

Moreover, whenever a user borrows tokens, a _borrowingFee is applied,which is
then subtracted from the to-be received tokens but still applied as liability,
therefore, users will immediately have a higher debt position than they have tokens
received. This fee is then sent to the treasury contract.

2.18.1	 Privileged Functions

• sweep

• sweepETH

• pause

• resume

• setBorrowingFee

• borrow (broker)

• repay (broker)

• repayOutstandingLiabilities (broker) 

Page of 72 183 Market Paladin Blockchain Security

2.18.2	 Issues & Recommendations

Issue #43 Stablecoin depositor vault can be fully drained if an asset with 20
decimals or more is ever added as collateral due to an overflow
vulnerability in the borrowing limit calculation

Severity

Location L132

uint total = amount.mulDiv(USD.unwrap(price), uint64(10 **

decimals));

Description The Ambit infrastructure allows for users to supply various assets
into the system as collateral to borrow against. The
getBorrowLimit functions then sum up all the dollar values of these
assets then multiply them by their LTV (percentage of their value
usable as borrowing power). This represents the borrowing limit.

However, due to an unsafe cast at line 132, if the underlying
supplied asset has a decimal number of 20 or more, an overflow
occurs. In case this overflow occurs, the borrowing limit can be
massively inflated. This means that as soon as an asset is added
with 20 or more decimals, anyone using that asset as collateral is
likely to get many multiples of its value in borrowing power.

Exploit scenario:

- The team adds “PRECISEUSD” as a collateral, a token with 20
decimals.

- Due to the overflow, uint256(10**20) overflows to
7766279631452241920. The correct value would have been
100000000000000000000, about 12 times larger than the
overflow value.

- The exploiter supplies $1m PRECISEUSD. The total calculation
becomes (1 million * 1e20) * price / 7766279631452241920 or
approximately 1 million * 12 * price. This means that the user
gets 12 times more borrowing power and can fully drain the
depositor vault’s underlying stablecoins. If a 75% LTV is used, up
to $9m underlying stablecoins can be drained for a supplied
value of $1m.

HIGH SEVERITY

Page of 73 183 Market Paladin Blockchain Security

This issue therefore results in a full drain if such a high-decimal
asset is ever added. There are quite a few assets with 20 or more
decimals on-chain, making this issue realistically possible. However,
to our knowledge, none of the major on-chain assets have 20 or
more decimals, so it is also possible that this will never occur.

Recommendation Consider removing the uint64 cast fully and simply retaining a full
256 bit variable.

Resolution RESOLVED

Issue #44 ensureHealthyAccount returns true for a score of 100

Severity

Description ensureHealthyAccount is called by various external contracts and
represents if an account is still healthy. For example, during a
withdrawal in the Portfolio contract, this function is called.
However, it will also return true if threshold = 100, essentially
returning a flawed value.

Portfolio code:

function ensureHealthyAccount(address account) private view

{

IMarket market = _registry.getMarket();

market.ensureHealthyAccount(account, 100);

}

Market code:

if (borrowLimit * 100 / liabilities >= threshold) {

Recommendation Consider changing >= to >. It might also make sense to carry over
the liabilities division to the other side (as a multiplication) to
significantly increase precision.

Resolution

While the 100 threshold is still unchanged, an address is now only
considered as unhealthy when reaching a threshold of 99. This fix
was implemented within the MarketLiquidation contract.

RESOLVED

HIGH SEVERITY

Page of 74 183 Market Paladin Blockchain Security

Issue #45 Borrowing can result in liquidation

Severity

Description WIthin borrowInternal, the following check is done to ensure that
an account cannot become unhealthy by a borrow action:

if (userLiability.liabilities + amount > borrowLimit) {

 revert Errors.Market_BorrowLimitExceeded({

 borrowLimit: borrowLimit,

 liabilities: userLiability.liabilities + amount

 });

}

However, this will not revert if the values are equal, hence a user
can get immediately liquidated.

Recommendation Consider reverting for >= as well.

Resolution

LOW SEVERITY

An address is now still considered healthy if both values are equal,
hence a revert for this scenario is not necessary anymore.

RESOLVED

Page of 75 183 Market Paladin Blockchain Security

Issue #46 Distributing interest only at the end of the loan can lead to
misalignment for long loan durations and even exploitation to
reduce interest paid in certain edge cases

Severity

Description Interest is only distributed to the vault at the very end of the borrow
period right when the underlying funds are returned. This can cause
significant misalignment in incentives as when a large sum of
underlying currency is returned to the vault, depositing APR will
suddenly become much higher. In this case, it should in fact be
lower as the vault now has significant excess liquidity and does not
need more.

Furthermore, given that interest is only paid at the end of the
borrow period, suppliers might not have much incentive to continue
supplying if most borrowers become long-term borrowers. They
might therefore withdraw their funds and cause the utilization rate
to constantly fluctuate. The end result is that utilization will
periodically become very high and then very low, due to the
combination of these misalignments.

This can even result in a small exploit to avoid paying a lot of
interest. The exploit could for example enable someone to only pay
a fraction of the interest by being the largest depositor in the vault
for a week (or whatever the distribution period is), right before the
protocol pauses preventing anyone else from joining in to claim the
yield. Additionally, the capital that actually provided the funds for
that large and long borrow is never directly repaid by that interest.
Instead, new entrants will likely get most of the yield.

Exploit scenario:

1) Exploiter Alice creates a long and does not repay it for 10 years.
She provided enough collateral to not be liquidated over this
timespan.

2) After those approximate 10 years, the team has to do
maintenance and pauses the protocol for a week.

3) Alice notices this pausing in the mempool and frontruns the
transaction by finally repaying her loan which kicks in the
interest distribution. She furthermore stakes a large amount of
underlying stablecoins into the depositor vault to become a 90%
owner of the depositor vault.

LOW SEVERITY

Page of 76 183 Market Paladin Blockchain Security

4) As the protocol is paused, users cannot deposit in the vault to
capture the huge amount of interest she just donated to the
vault by repaying her loan. Instead, she is able to capture it
almost entirely herself as she makes up 90% of the vault.

Recommendation Consider whether there are ways to collect the interest to the
borrowIndex over time. The challenge with such a design is that the
borrowIndex would not be fully represented by liquid assets in this
case, as some assets would still need to be returned.

A slightly less elegant solution could be to force users to repay after
a certain period.

Resolution ACKNOWLEDGED

Page of 77 183 Market Paladin Blockchain Security

Issue #47 Automatic reduction of the repay amount to outstanding liabilities
could cause issues for integrating applications who are unaware of
this

Severity

Location L207

amount = Math.min(amount, userLiability.liabilities);

Description If an amount higher than the user’s liability is repaid, this will result
in the function simply reducing the amount to the total outstanding
liability.

Though this is great, not all integrations by third-party smart
contracts might realize that this happens and can lead to
unexpected side-effects for these applications.

An example could be a third-party application who pulls in amount,
and then assumes that the full amount would be forwarded to the
market when they call repay.

Recommendation Consider whether it makes sense to only do this reduction in case
the amount is equal to the maximum integer, and otherwise revert if
the amount is larger than the liabilities. Next, consider preventing
the max integer from being supplied in the normal repay functions,
to ensure that they are not accidentally mis-used.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 78 183 Market Paladin Blockchain Security

Issue #48 Governance risk: _borrowingFee lacks upper limit

Severity

Description This struct value can be set without any limitations, which can result
in a loss of user funds as it means the fee to open borrowing
positions can be set to a large value of up to 100% of the borrowed
amount and should therefore implement a reasonable limit for the
BPs.

Governance exploit example:

- User A submits a transaction to borrow $1,000.

- Governance keys have been leaked, and the hacker sets the
borrow fee to 100%.

- User A pays his whole borrowed amount to the hacker, and
receives no stablecoins themselves.

Recommendation Consider implementing a safeguard so the BPs cannot be set to a
value larger than a certain reasonable threshold.

Resolution

LOW SEVERITY

RESOLVED

Page of 79 183 Market Paladin Blockchain Security

Issue #49 Market state is calculated if no time has elapsed

Severity

Description The market state is calculated under every circumstance, even if the
lastUpdate was at the current timestamp:

function calculateMarketState(IMarketStorage.MarketState

memory marketState) internal view returns

(IMarketStorage.MarketState memory) {

 uint256 ellapsed = block.timestamp -

marketState.lastUpdate;

 if (marketState.lastUpdate > block.timestamp) {

 revert Errors.Market_InvalidMarketState({

 blockTimestamp: block.timestamp,

 lastUpdate: marketState.lastUpdate

 });

 }

 Ray rate =

_registry.getMarketInterestRateModel().calculateRate();

 return calculateMarketState(marketState, rate,

ellapsed);

}

This will unnecessarily waste gas since the market state is almost
updated during every transaction within the Market contract,
potentially updating it multiple times per block.

Recommendation Consider simply returning early if no time has elapsed since the last
update.

Resolution

A check has been implemented within the accrueLiabilities
function.

RESOLVED

INFORMATIONAL

Page of 80 183 Market Paladin Blockchain Security

Issue #50 Gas optimizations

Severity

Description Line 52

IAddressRegistry private _registry;

This variable should be marked as immutable (and public).

Line 128

uint8 decimals = custodian.getUnderlyingAsset().decimals();

Calling this sequence seems rather wasteful as this value is not
supposed to change. However, we understand that this can be left
as-is for code simplicity purposes. The solution would probably be
to encode the decimals into an immutable variable within the
custodian, and return these as well. This would of course make the
code less clean.

Line 147

function borrowInternal(address account, uint256 amount,

address receiver) private whenNotPaused

requireNonZeroAmount(amount) {

The modifiers appear redundant here as they appear present on the
external functions already.

Line 231

underlyingAsset.safeIncreaseAllowance(address(vault), debt +

interest);

amount seems to be identical to debt + interest and could
therefore be cheaper to use as the approval value.

Lines 306-311

if (marketState.lastUpdate > block.timestamp) {

 […]
}

This code appears unreachable and can probably be removed.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution PARTIALLY RESOLVED

INFORMATIONAL

Page of 81 183 Market Paladin Blockchain Security

Issue #51 Typographical issues

Severity

Description Lines 4, 20, 21, 27 and 39

import { Address } from "../../dependencies/@openzeppelin/

contracts/utils/Address.sol";

import { IInterestRateModel } from "../../interfaces/market/

IInterestRateModel.sol";

import { IPortfolio } from "../../interfaces/portfolio/

IPortfolio.sol";

import { Ray, RayMath } from "../../libraries/RayMath.sol";

using Address for address payable;

These imports (not Ray) are unused and can therefore be removed. 
 
Line 52

IAddressRegistry private _registry;

This variable should be marked as public (and immutable).

Line 63

receive() external payable { }

This line appears to be unused and might introduce accidental ETH
sending which cannot be taken out of this contract except for with
the Sweepable dependency.

Lines 245-248

uint percentage = amount.mulDiv(10 ** decimals,

userLiability.liabilities);

interest = userLiability.liabilities -

userLiability.borrowed;

interest = interest.mulDiv(percentage, 10 ** decimals);

interest is calculated via division-before-multiplication, resulting
in less than optimal rounding behavior. We strongly urge the client
to re-write this code into a simpler structure which does not
unnecessarily round:

interest = amount.mul(userLiability.liabilities -

userLiability.borrowed).div(userLiability.liabilities)

INFORMATIONAL

Page of 82 183 Market Paladin Blockchain Security

accrueLiabilities lacks a whenNotPaused modifier, allowing it to
still be called in a paused state, which may not be desired.

——

It should also be noted that we recommend adding reentrancy
guards on all external functions in case the team wishes to redeploy
on a chain where the underlying stablecoin of the depositor vault
has, or could eventually have through upgrades, reentrancy hooks.

——

calculateMarketState alongside other code locations repeatedly
has “elapsed” mis-spelled as “ellapsed”.

——

The contract exposes two repayOutstandingLiabilities functions
of which one is only for authorized brokers. However, within the
whole architecture this function is never used. Moreover, it could be
abused to do dusting attacks in an effort to front-run full
repayments.

——

It should be noted that the getBorrowLimit functions are rather
inconsistent in their return values as some return USD-based
decimals (8) while others return a value in the decimals of the
depositor vault’s underlying value.

Recommendation Consider fixing the typographical issues.

Resolution

No additional reentrancy guards have been added to this contract.

PARTIALLY RESOLVED

Page of 83 183 Market Paladin Blockchain Security

2.19	 Market/MarketLiquidation

MarketLiquidation handles the liquidation logic for borrowing positions within the
Ambit Finance ecosystem. The liquidate function is triggered by the Liquidator
contract, repays a specific amount of an unhealthy account’s borrowing position,
and takes the collateral in exchange.

A position is considered unhealthy as soon as the liabilities reach the borrowLimit,
therefore users can increase their health factor by repaying liabilities or increasing
their collateral.

The contract allows for two liquidation possibilities:

- Liquidate a borrowed position and receive a specific desired collateral asset.

- Liquidate a borrowed position and receive the collateral with the largest position.

The liquidator therefore repays the debt and receives the full corresponding
collateral, including the premium. Collateral is withdrawn from the corresponding
Custodian contract and the account’s shares are decreased. The latter methodology
is used by the Liquidator contract, we highly assume that the first methodology is
reserved for some emergency liquidation scenarios.

It is only possible to liquidate a maximum of 50% of the total debt.

We reiterate that within this contract, positions are seen as liquidatable once they
have a 100% health factor — this may be unexpected for users and lead to issues in
other parts of the system if they assume 100% is still healthy.

It should be noted that as with several other sections of the codebase, the
liquidation logic does not strictly adhere to checks-effects-interactions, a pattern
we strongly recommend for complex codebases like this. We have emphasised
multiple times that the team should strictly refrain from adding any components

Page of 84 183 MarketLiquidation Paladin Blockchain Security

that introduce reentrancy vectors such as reentrancy tokens or swap routes as this
would break the key security properties of the system.

2.19.1	 Privileged Functions

• liquidate 

Page of 85 183 MarketLiquidation Paladin Blockchain Security

2.19.2	 Issues & Recommendations

Issue #52 findLargestPosition does not include collateralFactor

Severity

Description This function returns the largest position as USD value. However,
since tokens can have a different collateral ratio/factor, this could
return even positions without a collateral factor of zero, indicating
that these positions are never used for borrowing purposes.

Recommendation Consider not checking for the largest USD-Value per se but also
including the collateral factor. Note that liquidating the positions
with a lower collateral factor might be even more desirable as it is
more effective at turning an account solvent again.

Resolution

The client plans to implement specific features to disable tokens as
collateral at a later point in time.

ACKNOWLEDGED

LOW SEVERITY

Page of 86 183 MarketLiquidation Paladin Blockchain Security

Issue #53 calculateLiquidation potentially compares values in different
denominations

Severity

Description calculateLiquidation includes the following line:

maxAmount = Math.min(maxAmount,

totalSupply.mulDiv(discountedPrice, scalar,

Math.Rounding.Down));

This will not work if maxAmount is denominated in a different value
than USD, or if discountedPrice uses a USD Chainlink oracle for
calculation purposes.

This issue has been downgraded from HIGH to LOW since the client
makes an explicit assumption that they would never put any other
asset than a stablecoin as the underlying asset of the depositor
vault.

It is left in as a reminder that this audit specifically assumes that
USDT will always be used as the underlying asset and that this audit
does not apply for deployments with a different underlying
borrowable token than a stablecoin.

Recommendation Consider using a different oracle whenever a baseAsset other than
USDT is being used.

Resolution

Ambit Finance was developed to only work with USD oracles.

RESOLVED

LOW SEVERITY

Page of 87 183 MarketLiquidation Paladin Blockchain Security

Issue #54 Funds are withdrawn directly from the Custodian instead of the
PortfolioBroker

Severity

Description After the repayment is done while liquidating, the total supply is
withdrawn from the custodian to the liquidator. This is not the
pattern that Ambit follows on its architecture because it should be
calling the portfolio withdraw function instead of the custodians
withdraw.

During the liquidation, the supply is withdrawn from the Custodian
instead of the Liquidator. This breaks the desired function flow and
might result in edge-cases.

Recommendation Consider withdrawing from Portfolio instead Custodian.

We note that this might have been done to circumvent health
checks. Keep this in mind as being able to liquidate such positions
might be a business decision/trade-off.

Resolution RESOLVED

LOW SEVERITY

Page of 88 183 MarketLiquidation Paladin Blockchain Security

Issue #55 requireUnhealthyAccount passes if liabilities are zero

Severity

Description When an account has zero liabilities, this account is considered as
healthy. However, this modifier does not revert for the edge-case
that liabilities are zero:

modifier requireUnhealthyAccount(address account) {

 IMarket market = _registry.getMarket();

 uint256 liabilities = market.getLiabilities(account);

 if (liabilities > 0) {

 uint borrowLimit = market.getBorrowLimit(account);

 uint health = borrowLimit * 100 / liabilities;

 if (health >

Constants.UNHEALTHY_HEALTH_SCORE_THRESHOLD) {

 revert

Errors.MarketLiquidation_AccountTooHealthy(account, health);

 }

 }

 _;

}

This issue was only rated as low severity since this flaw cannot be
abused.

Recommendation Consider reverting for this edge-case as well.

Resolution RESOLVED

LOW SEVERITY

Page of 89 183 MarketLiquidation Paladin Blockchain Security

Issue #56 Highest position is potentially truncated

Severity

Description Whenever the the positions are fetched, they are denominated as
USD value with 8 decimals:

(, USD[] memory totals) =

portfolio.getPortfolioValue(portfolioAssets);

Once the logic has determined which position in the array has the
largest USD value, it is normalized to the _baseAsset denomination:

uint total =

totals[j].normalize(underlyingAsset.decimals());

In Ambit Finance’s deployment scenario, this will be USDT with 18
decimals on BSC. However, that is not a guaranteed factor, since it
could also be a token with 6 decimals, that would essentially result
in the last 2 decimals being truncated, returning a smaller position
size than desired.

This will then decrease the liquidation value.

Recommendation A fix is non-trivial, since truncating cannot be prevented. Do note
that for complex fixes, there may be an extra fee levied to validate
the code.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 90 183 MarketLiquidation Paladin Blockchain Security

Issue #57 Potential mismatch between maxAmount and liquidationSupply

Severity

Description Within calculateLiquidation, two amounts are calculated:

a) Amount which is necessary to liquidate a position

b) Corresponding collateral value which is received for this
liquidation

Since both values are corresponding, they will perfectly match,
however, the following line might decrease a), therefore leading in a
small additional loss for the liquidated user:

maxAmount = maxAmount.normalize(decimals,

underlyingAsset.decimals());

The normalize function will truncate maxAmount whenever the
underlying asset has fewer decimals.

Recommendation Consider if this loss is acceptable, if not, the whole logic needs to
be refactored.

Do note that for complex fixes, there may be an extra fee levied to
validate the code.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 91 183 MarketLiquidation Paladin Blockchain Security

Issue #57 Incorrect decimal denomination for minimum comparison

Severity

Description Within calculateDecimals, the last step of calculating the
liquidationSupply is the comparison of the totalSupply with the
liquidationSupply:

liquidationSupply = Math.min(totalSupply,

liquidationSupply);

However, the comparison does not the same decimal denominations
as totalSupply is still the normalized value, whereas
liquidationSupply has already been converted to the correct
value:

(decimals, maxAmount, discountedPrice, totalSupply) =

normalizeAmounts(asset, maxAmount, discountedPrice,

totalSupply); 

 

liquidationSupply = liquidationSupply.normalize(decimals,

ICustodian(asset.custodian).getUnderlyingAsset().decimals())

;

Fortunately, this will not result in any issues since the totalSupply
will always be larger than the liquidationSupply, hence it can
never impact the return value.

Recommendation Consider comparing the values in the same denominations.

Resolution

LOW SEVERITY

This has been removed completely.

RESOLVED

Page of 92 183 MarketLiquidation Paladin Blockchain Security

Issue #58 Small positions can never be fully liquidated

Severity

Description The contract only permits the liquidation of up to 50% of a position.
This means that after some time, it is simply not worth it to further
liquidate the position and the protocol might accumulate bad debt
because of it.

Recommendation This is a fundamental issue as a user can always open many small
positions which would cost too much gas to liquidate. A solution
could be to add a minimum position size (which must be fully
withdrawn if a withdrawal would go below it), but we understand
that this may be too messy to implement.

Consider also carefully investigating whether this bad debt can be
managed or not.

Resolution

A mechanism which refunds the value to a user in the scenario
where the liquidation is initiated with a larger value than the
liabilities has been introduced. However, this change introduces a
higher penalty towards users which can be denominated by the
premium based on min(threshold, positionSize), depending on
whether the forwarded balance within the Liquidator is sufficient to
cover the value. Therefore, if a positionSize is large and the
forwarded value from the liquidator is large, the user can
experience a way larger penalty which is now based on the
smallAccountThreshold instead of the repaid amount. The admin
should therefore carefully select the smallAccountThreshold value.

RESOLVED

LOW SEVERITY

Page of 93 183 MarketLiquidation Paladin Blockchain Security

Issue #59 Liquidation functions lack a mininimum received slippage check for
manual liquidations

Severity

Description If the Ambit team ever wants to manually liquidate a position, they
would have to add a slippage parameter to the liquidate function
to ensure they pay and receive values within reason.

This could particularly be a problem if a manual liquidation is
frontrun.

Recommendation Consider whether it makes sense to add validation parameters to
the liquidate functions which ensure that the liquidation went as
expected. This is particularly useful for the secondary liquidate
function which is not used by the automatic liquidator and therefore
presumably used solely by manual liquidation — perhaps only
adding checks to this function (in the form of a
minDiscountedPrice or something) is most sensible.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Issue #60 Typographical issues

Severity

Description SafeERC20, ASSET_FIELD_MARKETPLACE_ADAPTER,
ASSET_FIELD_MAX_SUPPLY, ASSET_FIELD_MAX_LTV, IMarketBroker,
IMarketStorage, IDepositorVault and the requireNonZeroAmount
modifier are unused and can therefore be removed.

——

_registry should be marked as public to allow users to inspect it
via the explorer.

Recommendation Consider fixing these typographical issues.

Resolution

INFORMATIONAL

PARTIALLY RESOLVED

Page of 94 183 MarketLiquidation Paladin Blockchain Security

2.20	 Market/MarketStorage

MarketStorage contains the sensitive storage of the Market contract, such as user
liabilities and the current market state.

It is called whenever the market state is updated and whenever users execute a
borrow or repay transaction on the Market contract.

2.20.1	 Privileged Functions

• setMarketState

• setUserLiabilities

2.20.2	 Issues & Recommendations

Issue #61 Typographical issues

Severity

Description The parameters for the setMarketState and setUserLiabilities
function can be marked as calldata.

——

The setters lack events, though this might be valid as it may be
considered wasteful as events might be generated appropriately
within the Market contract already.

Recommendation Consider fixing these typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 95 183 MarketStorage Paladin Blockchain Security

2.21	 Marketplace/
DepositorVaultMarketplaceAdapter

DepositorVaultMarketplaceAdapter is a simple marketplace adapter which is
responsible for redeeming the vaultToken in the DepositorVault / deposit the
baseAsset in the DepositorVault contract. The result of the exchange transaction
is always based on the current vault exchange rate, which is based on the yield
distribution within the vault to date.

Page of 96 183 DepositorVaultMarketplaceAdapter Paladin Blockchain Security

2.21.1	 Issues & Recommendations

Issue #62 normalize can truncate price if vaultToken has less than 8
decimals

Severity

Description The minimum amount to receive for redemption is determined as
follows:

uint minAmountOut = amount.mulDiv(price.normalize(decimals),

10 ** decimals);

However, if the vaultToken has fewer than 8 decimals, this will result
in a truncated price, potentially decreasing minAmountOut.

The same issue applies to the buy function where minSharesOut is
increased which can potentially DoS such a function call.

Recommendation Consider normalizing using the correct decimals instead to convert
from underlying to share decimals.

Resolution

The logic has been refactored and truncation is prevented.

RESOLVED

LOW SEVERITY

Page of 97 183 DepositorVaultMarketplaceAdapter Paladin Blockchain Security

Issue #63 Typographical issues

Severity

Description Line 28

IAddressRegistry private _registry;

This variable can be marked as public to make explorer inspection
easier for users and can be marked as immutable to save on gas.

——

We do not understand the benefit of using
safeIncreaseAllowance. forceApprove recently introduced in
OpenZeppelin makes much more sense in our opinion.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 98 183 DepositorVaultMarketplaceAdapter Paladin Blockchain Security

2.22	 Marketplace/Marketplace

Marketplace has two main functionalities for users:

- Allowing users to sell collateral in their portfolio to the baseAsset and repay
their debt.

- Allowing users to leverage their existing collateral position, similar to the
traditional looping mechanism by taking a flashloan from the DepositorVault
contract, purchasing a valid collateral token, supplying it as collateral and
repaying the flashloan and fee with the remaining borrowable amount.  
Moreover, instead of swapping the flashloan to a valid ERC20 token, a user can
also deposit it into the DepositorVault, receiving the VaultToken.

Page of 99 183 Marketplace Paladin Blockchain Security

2.22.1	 Issues & Recommendations

Issue #64 The brokerage functions of the marketplace contain faulty internal
states, allowing for any reentrant behavior to potentially exploit the
user and force liquidation

Severity

Description The Marketplace is what is considered a broker within the Market
system. A broker is allowed to make a set of transactions for a user
with the intermediary states for that user being “insolvency”.

This is exclusively safe if there is absolutely no reentrancy concern
at any point during these calls. Unfortunately, this is not necessarily
the case for Marketplace — within Marketplace, there are multiple
opportunities for eventual reentrancy during these transactions: e.g.
if an upgradeable DEX is added which upgrades to a malicious
implementation, or if 1inch or similar is ever supported where an
off-chain or on-chain system can configure an arbitrary swap route.

If such a swap route can be maliciously configured by an exploiter, it
can be configured to attempt to liquidate the user who is making a
swap. Since during these swap transactions the user account is
insolvent, they will in fact be liquidatable and the exploiter will be
able to collect the liquidation bonus.

Alongside this example exploit, the fact that intermediary faulty
states exist within these transactions can be a concern for exploits
that benefit from “read-only-reentrancy” and the likes. It is
therefore strongly recommended that no such faulty intermediary
states exist.

HIGH SEVERITY

Page of 100 183 Marketplace Paladin Blockchain Security

Recommendation Consider giving up the idea of these brokers being permitted to
make accounts temporarily insolvent as it makes the contracts less
secure. Instead, it might be (though less performant) safer to simply
flashloan the amount of USDT that would minimally need to be sold
beforehand.

Alternative designs do exist where a temporary “insolvency” can be
safely done. But such designs need to be natively integrated into the
core architecture to be safe and need to be extremely carefully
considered.

Consider whether it makes sense to have a global reentrancy guard
for any action which comes from an unprivileged account into the
system.

Resolution

The contract has been refactored and a new approach has been
used for that logic. We recommended the client to explicitly include
safeguards within the core but this is not done. Instead, each
authorized account still needs to carefully check that the user is
solvent at the end of its operations, and ensure that no external
calls or exception logic gets made in any insolvent state.

This is less than ideal in our opinion, and we have reminded the
client that we would prefer the core to make this solvency
guarantee.

RESOLVED

Page of 101 183 Marketplace Paladin Blockchain Security

Issue #65 borrowFeeAmount is not accounted into slippage

Severity

Description The user can determine a certain price and slippage when executing
a leverager transaction.

For example, if a user takes out a flashloan of 500 USDT and
determines a price of 1 (100000000) and a slippage of 100 BPs, this
means that the user expects at least 495 (let’s say USDC) as output
amount.

However, this calculation does not account for the borrowFee,
which is deducted from the input amount for the swap:

uint borrowFeeAmount =

market.getBorrowingFee().calculate(context.amount +

context.fees); 

 

uint availableAmount = context.amount - borrowFeeAmount; 

 

uint amountOut =

IMarketplaceAdapter(context.marketplaceAdapter).buy(

 availableAmount,

 context.price,

 context.slippage);

Users will therefore always accept more slippage than desired.

Recommendation Consider implementing logic that accounts for the borrowFee
additionally.

Resolution

MEDIUM SEVERITY

Logic has been implemented which adjusts the slippage accordingly.

RESOLVED

Page of 102 183 Marketplace Paladin Blockchain Security

Issue #66 Healthy state is not guaranteed

Severity

Description Within the MarketplaceVendor contract, the estimated USDT value
received for the sale of the specific collateral amount is calculated
via estimateSellAmount.

In certain scenarios, if the provided slippage is unreasonably large
and the user is already on the verge of liquidation, this USDT value
might be insufficient to maintain a healthy ratio whenever the
corresponding collateral value is withdrawn.

While the function at the end ensures that the position must be
healthy, it certainly reverts for that situation.

However since the swap is executed after the withdrawal, a
reentrancy-attack to liquidate the user can still happen here.

This issue is only rated as medium since the likelihood of this
happening is very low and the user would need to select a very large
slippage for this operation.

Recommendation Consider adding a health check directly after the collateral
withdrawal.

Resolution

This check has been implemented post-withdrawal as well.

RESOLVED

MEDIUM SEVERITY

Page of 103 183 Marketplace Paladin Blockchain Security

Issue #67 available calculation does not work for baseAssets that are not
USDT

Severity

Description The following line will return an incorrect value whenever a
baseAsset other than USDT is used:

uint available = market.getBorrowLimit(msg.sender) -

market.getLiabilities(msg.sender);

This potentially results in a revert of the whole function due to an
underflow.

Recommendation Consider either implementing a different logic or simply ensuring
that only USDT / a coin, with the same denomination as the
liabilities is used.

Note that this will be resolved on the note of this not being a
concern since we believe these functions are all specifically
designed for USDT buying and selling.

Resolution

LOW SEVERITY

No other assets will be used.

RESOLVED

Page of 104 183 Marketplace Paladin Blockchain Security

Issue #68 Estimation of maxAmount does not account for fee nor slippage

Severity

Description The following line estimates the value which can be used for
leveraging the portfolio, depending on the current free collateral
and the LTV:

uint maxAmount = estimateMaxAmount(available, asset.maxLTV);

As an example, if a user has 100 USDT of free collateral and the
asset which is desired to leverage as collateral has a LTV of 80%,
this will result in a flashloan amount of 500. Since 100 and 500*0.8
= 400, which is the amount that can be borrowed again to repay the
flashloan.

The issue with this calculation is that it returns the value under the
circumstances that this will be the value supplied as collateral
again. However, that is incorrect because

a) the flashloan fee,

b) the swap potentially encounters slippage, and

c) the borrow fee

will be deducted during the overall process, hence making this
calculation useless.

*This issue was only rated as low severity since a health check is
enforced at the end of the function.

Recommendation Consider including these factors in that check.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 105 183 Marketplace Paladin Blockchain Security

Issue #69 Invalid logic if context.amount < context.maxAmount

Severity

Description Whenever a user executes a leveraged buy call, the user can choose
their desired amount as flashloan. However, if the vault has
insufficient tokens, the flashloan request will only be executed using
the funds left in the vault:

maxAmount = Math.min(amount,

vault.maxFlashLoan(underlyingAsset));

Afterwards, the context is being encoded, which is including the
initial provided amount:

bytes memory context = abi.encode(msg.sender, token,

asset.marketplaceAdapter, amount, price, slippage);

This context is then encoded within the callback function of the
flashloan:

FlashLoanContext memory context;

context.amount = amount;

context.fees = fee;

(

 context.account,

 context.asset,

 context.marketplaceAdapter,

 context.maxAmount,

 context.price,

 context.slippage

) = abi.decode(data, (address, address, address, uint, USD,

BPS));

Afterwards, the following check is executed:

if (context.amount < context.maxAmount) {

 // dont continue with the swap if we didn't get all the

funds we were after

 return CALLBACK_SUCCESS;

}

LOW SEVERITY

Page of 106 183 Marketplace Paladin Blockchain Security

Which essentially compares the initial value we provided and the
received flashloan amount.

In the scenario where the vault has insufficient tokens, as mentioned
above, this will simply return the CALLBACK_SUCESS string. However,
since no approval has been granted and no fees have been
accumulated, this will always revert.

Recommendation Consider simply reverting directly in that scenario.

Resolution RESOLVED

Issue #70 sell does not return the total amountOut; instead, it returns the
amountOut after the liabilities repaid have been deducted

Severity

Description The sell function appears to intend to return the amount of USDT
that the asset was sold for. However, it appears to instead return the
sold amount after the liability repayment has been deducted, which
may be erroneous.

Recommendation Consider whether this is the desired amount to return or whether
the total amount received should be returned instead.

Resolution

The return value has been removed completely.

RESOLVED

LOW SEVERITY

Page of 107 183 Marketplace Paladin Blockchain Security

Issue #71 Missing check that marketplaceAdapter is set when buying from
your portfolio

Severity

Description When leveraging from the portfolio, the sell function checks that a
marketplaceAdapter is actually set:

if (asset.marketplaceAdapter == address(0)) {

 if (asset.token != address(baseAsset)) {

 revert

Errors.Marketplace_MissingMarketplaceAdapter(asset.token);

}

This check is missing in the buy function.

Recommendation Consider applying this check to the buy function as well.

Resolution

INFORMATIONAL

RESOLVED

Issue #72 Gas optimizations

Severity

Description _registry can be marked as immutable.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Page of 108 183 Marketplace Paladin Blockchain Security

Issue #73 Typographical issues

Severity

Description Address, AggregatorV3Interface, IWETH9, IMarketBroker,
IPortfolio, IPortfolioStorage, IPriceOracle,
PortfolioAssetExtensions, Pausable, Sweepable and
AuthorizedAccessControl are unused imports. Consider removing
them.

——

_registry should be marked as public to allow browser inspection
by users.

——

It is unclear why the contract contains a receive function.

——

The contract should opt for forceApprove over
safeIncreaseAllowance.

Recommendation Consider fixing these issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 109 183 Marketplace Paladin Blockchain Security

2.23	 Marketplace/
SpotMarketMarketplaceAdapter

SpotMarketMarketplaceAdapter is a simple UniswapV2 aggregator where users
can swap tokens using a variety of different Uniswap routers. Whenever a user
executes a swap, the most optimal route from all routers is being fetched and the
swap execution is being done on this router.

It should be noted that any permitted slippage, for example automatically via the
liquidation mechanism, might get extracted through front-running the transaction.
This is a design-choice made by the client and considered a trade-off.

It should finally be noted that we did not audit the underlying swap architecture and
assume that the routing logic returns genuine values. Additionally, we assume that
whichever DEX is used, swapExactTokensForTokens indeed provides the correct
amount of tokens without doing malicious reentrancy logic.

Page of 110 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

2.23.1	 Issues & Recommendations

Issue #74 minAmountOut calculation for buy function normalizes incorrect
decimals

Severity

Description Within the buy function, minAmountOut is calculated as follows:

uint minAmountOut = amount.mulDiv(10 ** decimals,

price.normalize(decimals));

While this works if the highlighted decimals are in the same decimal
denomination used for amount, it will not work if it is different.

Consider the following scenario:

a) 100 USDT is swapped for a Portfolio token

b) The portfolio token is denominated with 6 decimals

c) The price is 1, respectively 100000000 as a Chainlink return
value

This will result in the following calculation:  
100e18 * 1e6 / 1e6

The output amount will therefore be 100e18 when it should be
100e6, effectively DoS’ing the whole functionality.

*The same issue applies to the sell functiona:

uint minAmountOut = amount.mulDiv(price.normalize(decimals),

10 ** decimals);

Let’s say 1 ETH is swapped to USDT (6 decimals on mainnet), the
calculation would be as follows:

1e18 * 2000e18 / 1e18 = 2000e18 
 
Therefore, it would be expected that 2000e18 USDT will be
received for 1 ETH, however, since USDT is in 6 decimals, this will
revert always.

HIGH SEVERITY

Page of 111 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

Recommendation Consider normalizing the denominator to the output token
decimals:

uint minAmountOut = amount.mulDiv(10 ** decimals,

price.normalize(baseTokenDecimals));

uint minAmountOut =

amount.mulDiv(price.normalize(baseTokenDecimals), 10 **

decimals);

Note that this might cause truncation of the decimal values due to
potential div-before-mul execution.

Resolution RESOLVED

Issue #75 Inefficient architecture

Severity

Description The whole architecture relies on swaps using different UniswapV2
pairs. This might be inefficient in some cases and can easily result in
high severity issues where swaps can be DoS’ed via an external user
or simply will not work due to maximum hardcoded slippage on
previous contracts within the transaction flow.

Recommendation Consider simply abandoning the current architecture and switching
to a DEX aggregator directly, 1Inch as example.

It should be noted that this comes with the downside of relying
more on off-chain components and that slippage extraction for
liquidations becomes guaranteed at that point, compared to a
current possibility.

Resolution ACKNOWLEDGED

MEDIUM SEVERITY

Page of 112 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

Issue #76 Truncation of decimals will result in price decrease

Severity

Description Similar to the issue within DepositorVaultMarketPlaceAdapter,
the truncation of 8 decimals to potentially 6 decimals can result in a
undesired manipulation of minAmountOut:

L73 

uint minAmountOut = amount.mulDiv(price.normalize(decimals),

10 ** decimals); 

 

L84 

uint minAmountOut = amount.mulDiv(10 ** decimals,

price.normalize(decimals));

Recommendation A fix for this issue is non-trivial, as it would need a full refactoring.
Do note that for complex fixes, there may be an extra fee levied to
validate the code.

Resolution

MEDIUM SEVERITY

The client has taken steps to avoid this premature truncation.

RESOLVED

Page of 113 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

Issue #77 Slippage application will result in higher slippage than expected

Severity

Description Within applyFeeAdjustment, the slippage of the swap fee (0.3%) is
first applied and then afterwards the provided slippage by the user
is applied.

This will result in a larger slippage than was provided by the user,
which can result in a relative loss depending on the swap amount.

Especially given the scenario that this estimation is used for the
leverage and debt repayment scenario, a 0.3% slippage can already
result in a large value.

Recommendation Consider simply applying the provided slippage without the swap
fee.

Resolution

The 0.3% swap fee has been used and only the user-provided input
parameter is used as a slippage indicator. As discussed with the
developer, the frontend should set a default minimum slippage of
0.5% as it is done with all DEXes.

RESOLVED

MEDIUM SEVERITY

Page of 114 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

Issue #78 Hardcoded swapFee of 0.3%

Severity

Description Whenever a swap is executed, the 0.3% swap fee is applied to
decrease the minimum output amount. However, not every DEX has
a 0.3% swap fee, which can effectively mean:

a) Higher unnecessary slippage

b) DoS of swap due to a slippage which is too low

Recommendation A fix is non-trivial since custom pairs do not have a standardized
swap fee parameter. Consider simply switching to a completely
different architecture if this is seen as an issue in practice.

Do note that for complex fixes, there may be an extra fee levied to
validate the code.

Resolution

LOW SEVERITY

ACKNOWLEDGED

Page of 115 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

Issue #79 Typographical issues

Severity

Description The IAddressRegistry, IDepositorVault, IMarket,
IMarketStorage, IMarketLiquidation, IPortfolioStorage and
Fees imports appear to be fully unused. The
UnsafeSwapConditions error appears to be unused as well.

——

_routers, _baseToken and _token should be marked as public to
allow them to be inspected from within the browser. The latter two
variables can also be marked as immutable.

——

Various address types can be cast to their explicit types such as
IUniswapV2Router01 and IERC20Metadata, straight into the storage
section of the contract. This would avoid having to cast them later
on and would be considered more explicit.

——

forceApprove is more appropriate than safeIncreaseAllowance
within this contract.

——

minAmountOut is considered a misnomer within the swap arguments
as this amount is reduced within the function body.

——

The + 2 minutes addition within the swap is unnecessary and wastes
gas. block.timestamp suffices.

——

The findBestRoute function should explicitly validate that a router
was found, as it could occur that the catch clause is hit for every try
attempt. A simple non-zero address requirement suffices at the end.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 116 183 SpotMarketMarketplaceAdapter Paladin Blockchain Security

2.24	 Oracle/ChainlinkAggregatorPriceOracle

ChainlinkAggregatorPriceOracle is a simple helper contract that fetches the
price from a Chainlink oracle. It is used within the following contracts:

- Liquidator

- Market

- Portfolio

- MarketLiquidation

It is assumed that this oracle is always behind a fallback price oracle to address
staleness concerns. However, we have still communicated various potential extra
safeguards with the client to improve their oracle redundancy as Paladin believes in
defense-in-depth.

2.24.1	 Issues & Recommendations

Issue #80 Typographical issues

Severity

Description Line 10

AggregatorV3Interface immutable private _aggregator;

This variable can be marked as public to allow for users to inspect it
within the explorer.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 117 183 ChainlinkAggregatorPriceOracle Paladin Blockchain Security

2.25	 Oracle/DepositorVaultTokenPriceOracle

DepositorVaultTokenPriceOracle is a price oracle for the VaultToken which is
received as receipt for any deposit within the DepositorVault contract. It
represents the exact value of the underlying baseAsset using the exchangeRate in
the DepositorVault contract. The contract also uses an arbitrary
_denominatorPriceOracle to denominate the price.

For example, USDT as _denominatorPriceOracle will denominate the oracle price
as 1, while AVAX will denominate the price as 10 (assuming 1 AVAX = 10 USD).

The _denominatorPriceOracle should therefore always represent the same token
as the underlying token of the DepositorVault contract, respectively USDT in
Ambit Finance’s architecture.

Page of 118 183 DepositorVaultTokenPriceOracle Paladin Blockchain Security

2.25.1	 Issues & Recommendations

Issue #81 Lack of staleness check for denominator oracle

Severity

Description There is no staleness check when fetching the price from the
denominator oracle which can lead to an outdated price.

Recommendation Consider implementing such a check.

Resolution

LOW SEVERITY

A boolean isStale is received when interacting with the
denominator oracle — this boolean is then forwarded whenever a
contract calls getLatestPrice.

RESOLVED

Issue #82 DepositorVaultTokenPriceOracle reports an incorrect price if
the underlying token has a different number of decimals compared
to the vault token

Severity

Description It appears that this contract assumes that the underlying token of
the depositor vault must have an identical amount of decimals
compared to the share token of that vault. This is however not
enforced as of now.

It should be noted that it makes sense for these decimals to be
equal, since the depositor vault’s shares are minted proportionally
to the underlying token at first. This is the reason why this issue has
only been raised as low, since it appears like these decimals will be
equal in practice within the initial deployment.

Recommendation Consider enforcing this equality.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 119 183 DepositorVaultTokenPriceOracle Paladin Blockchain Security

Issue #83 Price is truncated

Severity

Description The price is calculated as follows:

uint price2 =

exchangeRate.mulDiv(denominatorPrice.normalize(decimals),

scalar).normalize(decimals, USDMath.DECIMALS);

However, since decimals are usually denominated in 18 for USDT on
BSC, the result will be truncated to 8 decimals potentially
decreasing the price. This can result in a lower price than desired.

Recommendation Consider if that is an issue, if yes, the logic needs to be adjusted.

Resolution ACKNOWLEDGED

LOW SEVERITY

Issue #84 Gas optimizations

Severity

Description _registry and _denominatorPriceOracle can be marked as
immutable to save significant gas.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

RESOLVED

Page of 120 183 DepositorVaultTokenPriceOracle Paladin Blockchain Security

Issue #85 Typographical issues

Severity

Description _registry and _denominatorPriceOracle can be marked as public
to allow users to inspect their values from within the explorer.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 121 183 DepositorVaultTokenPriceOracle Paladin Blockchain Security

2.26	 Oracle/FallbackPriceOracle

FallbackPriceOracle is a custom implementation which fetches the price from
two oracles:

- _primaryOracle

- _fallbackOracle

While the price is always first fetched from the primary oracle, if the staleness
check does not succeed, it will switch to fetching the price from the fallback oracle.
It can be used within the same contracts as the standard
ChainlinkAggregatorPriceOrale.

It may make more sense to return the minimum between the two oracle prices, as it
adds another layer of defense, though the client’s advisor indicated that returning
the least stale value is a design choice which was made.

Another recommendation which we have made to the client is to TWAP the price up
if the oracle returns an abnormal price.

Page of 122 183 FallbackPriceOracle Paladin Blockchain Security

2.26.1	 Issues & Recommendations

Issue #86 Oracle can be made magnitudes more secure within the current
design by allowing the price to only slowly go up but go down
instantly

Severity

Description Principle: Oracle prices within the system seem to be mainly used
for liquidation and collateral value to open positions.
Underestimating asset prices is safe for the protocol (somewhat
risky for users), overestimating asset prices can be tremendously
risky for the protocol.

The core principle is to underestimate prices for a safer protocol. If
the system enforces that prices cannot suddenly increase by a large
amount, the system is not exploitable in a short timeframe,
regardless of how bad the oracles used are. This is insanely valuable
for the security of the system, as long as the oracles are only used
for collateral valuation.

This security principle allows you to implement simple but
extremely strong safeguards, most notably:

1. Price goes instantly down, but TWAPs up: If an asset starts
increasing in price, the oracle should catch up slowly instead of
instantly, eg. 10%/hour might be a good heuristic. If the oracle
price goes down however, it can go instantly down.

2. Taking the minimum price between multiple oracles. This is
however a design choice since if an oracle malfunctions and
returns price $0, a lot of users may get liquidated.

Recommendation Consider whether either design choice makes sense to seriously
improve the safety of the oracle to a point where exploiting them
becomes prohibitively difficult.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 123 183 FallbackPriceOracle Paladin Blockchain Security

Issue #87 Staleness protection not guaranteed

Severity

Description Whenever the first oracle call returns a stale price, the second call is
executed. However, if the second call also returns a stale price, the
incorrect first stale price is used.

Recommendation Consider reverting in that case.

Resolution

Although a boolean is now propagated which indicates this.

ACKNOWLEDGED

LOW SEVERITY

Issue #88 isStale could theoretically underflow and revert

Severity

Location Line 39

return block.timestamp - timestamp > _timeout;

Description If the original oracle malfunctions and returns a timestamp in the
future, this underflows and reverts. Instead, it may make more
sense to use the fallback oracle in this scenario, alongside the
scenario where the primary Chainlink oracle reports a negative
price.

Recommendation Consider whether it makes sense to use a fallback oracle in such a
scenario.

Resolution

INFORMATIONAL

The staleness check is outsourced.

RESOLVED

Page of 124 183 FallbackPriceOracle Paladin Blockchain Security

Issue #89 Gas optimizations

Severity

Description _primaryOracle, _fallbackOracle and _timeout can be marked
as immutable to save significant gas.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

RESOLVED

Issue #90 Typographical issues

Severity

Description _primaryOracle, _fallbackOracle and _timeout can be marked
as public to make inspection by users through the explorer
possible.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Page of 125 183 FallbackPriceOracle Paladin Blockchain Security

2.27	 Portfolio/Custodian

Custodian is a simple vault contract which stores the asset from the Portfolio
interactions. Each asset has its own vault and eventually can earn rewards based on
the LinearDistributionVault logic.

At the current development phase, the Custodian will not receive any additional
yield, however, the Ambit Finance team indicated that this will potentially change in
the future.

The deposited collateral can potentially get liquidated.

2.27.1	 Privileged Functions

• pause

• resume

• sweep

• sweepETH

Page of 126 183 Custodian Paladin Blockchain Security

2.27.2	 Issues & Recommendations

Issue #91 Checks-effects-interactions pattern is not adhered to, allows for
the Portfolio maxSupply check to be bypassed through a reentrancy
exploit

Severity

Description Within the deposit and withdraw function, the transfers are
executed before the state variable changes happen.

This violates the CEI pattern and makes the contract vulnerable to
reentrancy attacks.

It should be noted that the current design is consistent with the
approach OpenZeppelin and other providers, where the interaction
occurs at a state where neither the supply nor shares have increased
yet.

The main reentrancy exploit we found which is however still
possible is the ability to bypass the asset.maxSupply check within
the Portfolio contract.

When checks-effects-interactions is not adhered to, finding all
exploits is however a difficult task. We recommend adhering to the
pattern instead to resolve this exploit and potentially future ones as
well. A similar issue is present with the total asset check on
withdrawals for now as well.

Recommendation Consider executing the effects before the interactions.

Resolution

LOW SEVERITY

Custodian has been refactored into a simple token storage
contract, transfers are now done after state variable changes.

RESOLVED

Page of 127 183 Custodian Paladin Blockchain Security

Issue #92 Typographical issues

Severity

Description Lines 8, 10, 21 and 23

import { IAddressRegistry } from "../../interfaces/core/

IAddressRegistry.sol";

import { AddressRegistryExtensions } from "../../libraries/

AddressRegistryExtensions.sol";

using AddressRegistryExtensions for IAddressRegistry;

IAddressRegistry private _registry;

These imports are unused and can be removed.

——

Being able to configure the initial total shares and assets at
deployment is not only a governance risk, but also a configurational
risk. Vaults are not supposed to be present with a state where the
shares are non-zero but the underlying assets are zero. This state
becomes possible due to this configurability. Consider either
removing the constructor parameters to configure these values or
explicitly requiring both values to be either zero or non-zero to
avoid these non-permitted states.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

The initial total shares and assets are no longer directly
configurable. The imports are left as-is.

PARTIALLY RESOLVED

Page of 128 183 Custodian Paladin Blockchain Security

Issue #93 Gas optimizations

Severity

Description Lines 58-60 and 77-79

if (amount == 0) {

 return 0;

}

These portions of code appear unused and unreachable due to the
requireNonZeroAmount modifier and can therefore be removed.

Line 84

balance: getTotalAssets()

This was already fetched from storage and could be cached.
Though arguably caching it might increase gas cost as this is an
unlikely path so we are fine with this not being cached as well. This
check in general however seems redundant with checks which could
be (but are not right now, which we do not like) occurring within
decreaseTotalAssets.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 129 183 Custodian Paladin Blockchain Security

2.28	 Portfolio/CustodianMigrator

CustodianMigrator facilitates a secure transfer of assets from an old custodian to
a newly instantiated one. Initiated by an administrator, the contract pauses
interactions with the old custodian, safely transfers assets to a temporary treasury,
and then funnels them to the new custodian. Once transferred, system records are
updated to reflect the new custodian, and permissions are strategically adjusted to
maintain system security.

2.28.1	 Issues & Recommendations

No issues found. 

Page of 130 183 CustodianMigrator Paladin Blockchain Security

2.29	 Portfolio/Portfolio

Portfolio is the entry point for users to supply and withdraw collateral. Users can
supply any eligible asset to the Portfolio contract which then increases a user’s
share of this asset on a pro-rated basis depending on the total assets supplied,
including the yield. The asset is transferred to the corresponding Custodian
contract and serves as collateral for borrow activities within the Market contract.

This contract also includes functionality to determine the whole USD value of all
positions from one specific address.

The authorized supply and withdrawal functionalities are used by the Marketplace
contract during the buy and sell operations.

There is also a configuration risk where a bad custodian is configured for an asset,
potentially pulling bad tokens from the user which they did not intend to. The team
should be careful with configuring custodians and should keep their keys secure, as
described further in the global governance issue.

*It should be noted that, if a user decides to supply assets via the Portfolio

contract, the approval must be granted to the corresponding Custodian contract.

2.29.1	 Privileged Functions

• sweep

• sweepETH

• pause

• resume

• supply (Marketplace)

• withdraw (Marketplace) 

Page of 131 183 Portfolio Paladin Blockchain Security

2.29.2	 Issues & Recommendations

Issue #94 ETH liquidation is impossible due to special handling of ETH
compared to WETH

Severity

Description The ETH supply function uses exception logic within the Portfolio
contract, thus it is managed differently to the WETH supplies. It
uses a different configuration but also uses the exception hardcoded
“0x0” asset to indicate that the supplied asset is the native gas
token.

By adding exception logic like this instead of simply relying on the
existing ERC20 WETH logic, the complexity of the protocol is
essentially doubled as throughout the protocol, every piece of code
now needs to be aware that 0x0 is a special exception asset
meaning “ETH tokens”.

This is done consistently throughout the protocol, except for one
location we identified (there could be more): the liquidation
procedures. These liquidation procedures rely on the asset address
to represent the ERC20 token while for ETH it is 0x0. This
completely prevents ETH liquidations from happening.

Recommendation Consider not having exception logic like this for ETH; instead, rely
on WETH for ETH deposits and withdrawals. The utility functions
should simply wrap and unwrap into WETH and then call the
ERC20 related code instead of using a magic 0x0 value.

Do not fix the individual locations within liquidation, as this is only a
symptom and not the cause of the disease.

Resolution

HIGH SEVERITY

The logic has been refactored to use WETH instead behind the
scenes.

RESOLVED

Page of 132 183 Portfolio Paladin Blockchain Security

Issue #95 Custodian is called before share amount is updated

Severity

Description Within the withdrawFrom function, the call to the custodian is
executed before the shares are decreased. As the custodian will
transfer the ERC20 token to the receiver, this opens up a potential
reentrancy state since at the point of the transfer, the user already
has the funds but the portfolio storage still displays the old share
amount of the user:

function withdrawFrom(address account, address receiver,

address asset, uint256 amount) private {

 IAssetStorage assetStorage =

_registry.getAssetStorage();

 IAssetStorage.Asset memory a =

assetStorage.getAsset(asset, ASSET_FIELD_CUSTODIAN);

 require(a.custodian != address(0));

 ICustodian custodian = ICustodian(a.custodian);

 IPortfolioStorage portfolioStorage =

_registry.getPortfolioStorage();

 IPortfolioStorage.PortfolioAsset memory portfolioAsset =

portfolioStorage.getPortfolioAsset(account, asset);

 uint shares = custodian.withdraw(receiver, amount);

 if (shares > portfolioAsset.shares) {

 revert Errors.Portfolio_WithdrawAmountTooLarge({

 amount: amount,

 shares: shares,

 totalShares: portfolioAsset.shares

 });

 }

 portfolioStorage.decreaseShares(account, asset, shares);

}

MEDIUM SEVERITY

Page of 133 183 Portfolio Paladin Blockchain Security

This will result in an un-updated state in favor of the user during the
token transfer, where getPortfolioValue will return a larger value
than the user actually has supplied.

Recommendation Consider strictly adhering to checks-effects-interactions throughout
the codebase. Consider adding a global reentrancy guard if unsure.

*The same issue applies to supplyTo.

Resolution

The share increase/decrease is now done before the token transfer.

RESOLVED

Issue #96 Missing non-zero modifier

Severity

Description withdrawETH lacks a non-zero modifier for amount. This will
potentially give users more flexibility to cause undesired function
states.

Recommendation Consider adding such a modifier to this function.

Resolution RESOLVED

LOW SEVERITY

Page of 134 183 Portfolio Paladin Blockchain Security

Issue #97 Off-by-one error within supplyTo

Severity

Description Whenever a user supplies tokens, the following safety check is
implemented:

if (portfolioStorage.getCount(account) >=

MAX_PORTFOLIO_ASSETS) {

 revert

Errors.Portfolio_MaxmimumLimitReached(MAX_PORTFOLIO_ASSETS);

}

This basically ensures that a user cannot supply more than 20
assets. However, since the increaseShares call is made after the
check, users can then reach the 20 threshold, which means that a
withdrawal is needed to supply further.

Recommendation Consider either checking the count post-increase, or keep the CEI
structure and adjust the check itself.

Resolution

The check has been moved post-increase.

RESOLVED

LOW SEVERITY

Page of 135 183 Portfolio Paladin Blockchain Security

Issue #98 Inconsistency between share increase/decrease

Severity

Description When supplying, the share increase is done as follows:

portfolioStorage.increaseShares(account, asset.token,

shares);

while during a withdrawal, the share decrease is done as follows:

portfolioStorage.decreaseShares(account, asset, shares);

Within the decrease, the asset struct value is used while with the
increase, the exact token for that asset struct is used.

This is not an issue since the invariant that asset value =
asset.token is always given within the setAsset function in the
AssetStorage contract. However, it should still be noted for
consistency reasons.

Recommendation Consider using asset.token for the decrease scenario as well.

Resolution

LOW SEVERITY

RESOLVED

Issue #99 Additional layer of security: USD based caps

Severity

Description The Portfolio has absolute caps on the number of tokens that can
be supplied in aggregate to a market. It may make sense to also cap
the USD value of these assets.

Recommendation Consider either USD based caps or implementing a
recommendation as stated elsewhere where USD token value
cannot increase with a high velocity.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 136 183 Portfolio Paladin Blockchain Security

Issue #100 Typographical issues

Severity

Description L 6, 8 and 25

import { IERC20Metadata } from "../../dependencies/

@openzeppelin/contracts/token/ERC20/extensions/

IERC20Metadata.sol";

import { AggregatorV3Interface } from "../../dependencies/

@chainlink/contracts/src/v0.8/interfaces/

AggregatorV3Interface.sol";

import { Normalizer } from "../../libraries/Normalizer.sol";

These imports are unused and can be removed.

——

_registry should be made public here and within the other
contracts.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Issue #101 Gas optimizations

Severity

Description _registry can be marked as immutable here and within the other
contracts.

——

weth can be cached.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Page of 137 183 Portfolio Paladin Blockchain Security

2.30	 Portfolio/PortfolioStorage

PortfolioStorage stores important state variables for the Portfolio contract
such as which tokens the user has supplied and the corresponding shares for this
token.

It should be noted that getPortfolioAssets may run out of gas and the client
should be careful with not enabling too many assets for this reason.

2.30.1	 Privileged Functions

• increaseShares (Portfolio)

• decreaseShares (Portfolio)

2.30.2	 Issues & Recommendations

Issue #102 Gas optimizations

Severity

Description Line 63

if (portfolioAsset.shares == 0) {

This value has already been fetched at this point, it can be cached
to save gas.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Page of 138 183 PortfolioStorage Paladin Blockchain Security

2.31	 Security/AdminAccessControl

AdminAccessControl is a simple access control dependency to manage an admin
role for contracts using this dependency which can be granted to several accounts.
It expands upon OpenZeppelin’s AccessControl contract and introduces a single
modifier which can be used to guard functions: onlyAdmin.

It is used within the following contracts:

- AddressRegistry

- Overseer

- Pausable

The privileged role is stored as ADMIN_ROLE with
0xdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec42 as
the role key.

2.31.1	 Privileged Functions

• renounceRole [role bearer]

• grantRole

• revokeRole 

Page of 139 183 AdminAccessControl Paladin Blockchain Security

2.31.2	 Issues & Recommendations

Issue #103 Unused import

Severity

Location L5

import { AuthorizedAccessControl } from "./

AuthorizedAccessControl.sol";

Description This import is unused.

Recommendation Consider removing the unused import.

Resolution

INFORMATIONAL

RESOLVED

Page of 140 183 AdminAccessControl Paladin Blockchain Security

2.32	 Security/AuthorizedAccessControl

AuthorizedAccessControl is similar to the AdminAccessControl contract. It is
used within the following contracts:

- AssetStorage

- Treasury

- MarketLiquidation

- MarketStorage

- Custodian

- PortfolioStorage

The privileged role is stored as AUTHORIZED_ROLE with
0x50e75b23f8ec51bbcb044fe377457e835f3b5ccc7ebf69e80906452015dff607 as
the role key.

2.32.1	 Issues & Recommendations

No issues found. 

Page of 141 183 AuthorizedAccessControl Paladin Blockchain Security

2.33	 Security/AccessControlList

AccessControlList provides a framework for role-based access control. Upon
initialization, the deployer is assigned the ADMIN_ROLE. This role is pivotal as it can
grant or revoke roles to other addresses through the grantRole and revokeRole
functions respectively.

Any address can willingly renounce its role via the renounceRole function. A safety
measure is in place to ensure there is always at least one admin — the last
ADMIN_ROLE cannot be removed.

Events such as RoleGranted and RoleRevoked ensure transparency by signalling
role changes.

A specialized onlyAdmin modifier restricts certain functions only to admin access
such as grantRole and revokeRole. hasRole function is used as a pivotal guide
throughout Ambit’s whole infrastructure, ensuring a smooth and secure access
control mechanism.

2.33.1	 Issues & Recommendations

No issues found. 

Page of 142 183 AccessControlList Paladin Blockchain Security

2.34	 Tokens/AmbitToken

AmbitToken is a simple token using LayerZero’s Omichain Fungible Token
implementation (https://github.com/LayerZero-Labs/solidity-examples/tree/main)
with 18 decimals.

The token includes a burn functionality which allows the caller to burn their own
token balance, however, it is restricted to be called by the Treasury contract only.

The contract mints an initial supply of 100_000_000e18 tokens to the Treasury
address.

2.34.1	 Privileged Functions

• burn (treasury)

Page of 143 183 AmbitToken Paladin Blockchain Security

https://github.com/LayerZero-Labs/solidity-examples/tree/main

2.34.2	 Issues & Recommendations

Issue #104 Typographical issues

Severity

Description Line 14

error NotPermitted(address caller);

The contract could re-use Authorization_NotAuthorized error
from Errors.sol here.

Line 16

IAddressRegistry immutable private _registry;

_registry should be made public to allow for users and reviewers
to easily inspect it in the explorer.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 144 183 AmbitToken Paladin Blockchain Security

2.35	 Utils/Pausable

Pausable implements pausing and unpausing functionality and is used throughout
the ecosystem within the following contracts:

- Treasury

- Market

- MarketLiquidation

- Custodian

- Portfolio

- DepositorVault

- DepositorVaultToken

2.35.1	 Privileged Functions

• pause

• resume

2.35.2	 Issues & Recommendations

 No issues found. 

Page of 145 183 Pausable Paladin Blockchain Security

2.36	 Utils/Sweepable

Sweepable implements sweeping functionality such as transferring ERC20 token
and ETHER out of the contract. It is used throughout the ecosystem within the
following contracts:

- Liquidator

- Market

- Portfolio

Note that the Sweepable dependency does not revert if the contract has insufficient
tokens. In this case, it simply transfers whatever balance it has to the treasury.

2.36.1	 Privileged Functions

• sweep

• sweepETH

• renounceRole [role bearer]

• grantRole [DEFAULT_ADMIN_ROLE]

• revokeRole [DEFAULT_ADMIN_ROLE]

Page of 146 183 Sweepable Paladin Blockchain Security

2.36.2	 Issues & Recommendations

Issue #105 Sweeping Ether to treasury might not work for treasuries that
execute logic on their fallback

Severity

Description Since the treasury is a contract, transfer will revert due to only
forwarding 2300 gas with the call if the recipient executes code in
its fallback. This will result in stuck Ether in the contract if the
treasury address is changed to one with fallback logic within the
registry contract.

Additionally, there is no guarantee that the gas costs will not change
over time with hard-forks, making this extra risky.

Recommendation Consider using .call instead of .transfer.

Resolution RESOLVED

LOW SEVERITY

Page of 147 183 Sweepable Paladin Blockchain Security

Issue #106 Typographical issue

Severity

Description L4 and 17

import { Address } from "../../dependencies/@openzeppelin/

contracts/utils/Address.sol";

using Address for address payable;

These imports appear unused.

L19

IAddressRegistry private _registry;

This should be marked as public.

L27

function sweep(address token, uint amount) external

onlyAuthorized {

token can be directly provided as type IERC20.

Recommendation Consider fixing the typographical issues.

Resolution RESOLVED

INFORMATIONAL

Issue #107 sweepETH is payable

Severity

Description This function is payable, however, there is no reason to send any
ETH with this transaction.

Recommendation Consider removing the payable keyword.

Resolution RESOLVED

INFORMATIONAL

Page of 148 183 Sweepable Paladin Blockchain Security

2.37	 Vault/DepositorVault

DepositorVault is a simple vault contract where users can deposit an asset and
receive the vaultToken as position receipt. The underlying value of this position
will then increase due to various different mechanisms of which all are based on the
donate functionality.

The admin can set a borrow limit for any arbitrary address which then allows this
address to borrow tokens from the vault without a collateral position for an
arbitrary fee. It is primarily intended that the Market contract is the borrowing
party. The borrow limit can be either expressed as absolute value or as basis points.
In the latter case, the basis point value will be applied on the total current available
balance which is denominated as (totalAssets - totalLiabilities), including
distributed yield up to the current timestamp. The borrowable amount is then
calculated as theoreticalLimit - liabilities.

The donation functionality allows yield to accumulate which is then linearly
distributed over the course of the next 6 hours. Yield will be generated from the
interest which users pay on their borrowing positions as well as from a part of the
profit which is generated during liquidations.

It should be noted that the borrower’s utilization rate can exceed 100% in cases like
when the limit is reduced. This has an impact on the interest rate, which could
become higher than expected for users. But this appears to be a design decision so
it was not added as an issue.

The contract is not compliant with deposit tokens that have a fee on transfer — this
is fine as the USDT implementation the client plans to use will realistically never
have such functionality. Additionally, the client has indicated that they do not ever
plan to support a reentrancy deposit token.

Page of 149 183 DepositorVault Paladin Blockchain Security

2.37.1	 Privileged Functions

• setReserveBPS [ADMIN_ROLE]

• setFlashloanFee [ADMIN_ROLE]

• setMaxSupply [ADMIN_ROLE]

• setBorrowLimit [ADMIN_ROLE]

• sweep [AUTHORIZED_ROLE]

• sweepETH [AUTHORIZED_ROLE]

• pause [ADMIN_ROLE]

• resume [ADMIN_ROLE]

• renounceRole [role bearer]

• grantRole [DEFAULT_ADMIN_ROLE]

• revokeRole [DEFAULT_ADMIN_ROLE]

Page of 150 183 DepositorVault Paladin Blockchain Security

2.37.2	 Issues & Recommendations

Issue #108 DoS exploit: Several functions including getAvailableBalance
can be exploited when utilization is 100% by withdrawing manually
sent USDT, causing these functions to brick and revert due to an
underflow vulnerability

Severity

Location Line 125

uint256 balance = getTotalAssets() - getTotalLiabilities();

Description Several sections of code within the DepositorVault calculate the
unallocated balance as the difference between the vault’s assets
and the vault’s liabilities. Assets are increased whenever people call
the deposit function to deposit USDT into the vault, and decreased
whenever they withdraw USDT via the withdraw function. Liabilities
are similarly increased and decreased through borrow calls and
repay calls.

Once all USDT is borrowed out, given a reserve factor of 0, the
balance of the vault becomes 0. This prevents any further
withdrawals simply because the vault does not have any USDT to
send to the withdrawing user.

This is good because if people could still make withdrawals, line
125 would underflow and various sections of code would suddenly
start reverting, causing the contract to severely malfunction.

However, it turns out that there is still a clever way for an exploiter
to instantiate a withdrawal. The exploiter could in fact send some
USDT manually to the contract, through a regular transfer, and then
withdraw it again.

Though this has no direct financial benefit, it would cause
getTotalAssets() to decrease on the withdraw, without these
assets increasing when the USDT was sent. This causes line 125 to
underflow and multiple sections of the contract to become bricked.
The exploiter has therefore succeeded at denying service to
multiple portions of the contract by abusing the lack of accounting
checks within the withdraw function, which instead uses the USDT
balance as the check to ensure that withdrawals are permitted.

HIGH SEVERITY

Page of 151 183 DepositorVault Paladin Blockchain Security

Recommendation Consider not relying on the USDT balance to validate whether
withdrawals and redemptions should be allowed. Instead, validate
the accounting parameters (getTotalAssets() -
getTotalLiabilities()) explicitly.

Resolution

A check has been introduced within the withdraw function, ensuring
that the withdrawal amount cannot be larger than the difference of
deposited assets and liabilities.

RESOLVED

Page of 152 183 DepositorVault Paladin Blockchain Security

Issue #109 External users can manipulate the utilization ratio

Severity

Description The utilization ratio is computed as follows:

Math.mulDiv(liabilities.normalize(decimals, 27),

RayMath.RAY, effectiveLimit.normalize(decimals, 27));

However, if the effectiveLimit, which is either the
theoreticalLimit or the amount of assets within the contract, is
zero, the whole utilization value becomes zero to prevent a division
by zero:

uint256 effectiveLimit = Math.min(theoreticalLimit,

getTotalAssets());

 uint utilization = effectiveLimit == 0

 ? 0

Due to the nature of lending pools, the balance will never cover the
whole supplied amount of depositors, hence one single depositor
may force the vault into a state, where no assets are left in the vault
with a simple withdrawal:

function decreaseTotalAssets(uint amount) internal {

 (uint totalAssets, uint totalYield) = distributeYield();

 _totalAssets = amount > totalAssets ? 0 : totalAssets -

amount;

 _totalYield = totalYield;

 _distributionTimestamp = block.timestamp;

}

The depositor has now artificially caused a utilization rate of zero,
resulting in a manipulation of the borrowIndex within the Market
contract.

Another way to increase/decrease the current utilization ratio is to
simply execute a large deposit/withdrawal before the market state
update, as this will impact the utilization ratio, since borrowLimit is
based on the total amount of assets deposited:

HIGH SEVERITY

Page of 153 183 DepositorVault Paladin Blockchain Security

BPS.wrap(uint16(borrowLimit.amount)).percentOf(getTotalAsset

s());

A very large deposit can therefore artificially increase the
borrowLimit to a minimum if the relative approach is activated.
This can be constantly used to front run every market state update,
since the deposited amount can be withdrawn immediately again.

The _reserveBPS checks within getAvailableBalance can also be
bypassed through a similar flash exploit.

Recommendation Consider updating the market state before each deposit/
withdrawal. Consider not overly relying on instantaneous relative
balance checks on the depositor vault. Checks like the reserveBPS
and relative borrow limits can presently be trivially bypassed after
all.

Resolution

The client has indicated they are solving this in further iterations
using a weighted average of balance snapshots.

ACKNOWLEDGED

Page of 154 183 DepositorVault Paladin Blockchain Security

Issue #110 Users can potentially lose tokens during repay

Severity

Description At the current development state, it is only intended to allow
borrowing/repaying for the Market contract. However, in the future
this might change, and any of the authorized addresses can call the
repay function to repay borrowed funds.

However, this function is flawed in the scenario where the caller
submits a larger amount than the actual debt — in this case, the
amount is being transferred from the caller while the maximum
liabilities are decreased:

function repay(uint256 amount) external onlyAuthorized

whenNotPaused requireNonZeroAmount(amount) {

 IERC20Metadata underlyingAsset = getUnderlyingAsset();

 uint256 balance = underlyingAsset.balanceOf(msg.sender);

 if (amount > balance) {

 revert Errors.DepositorVault_AmountExceedsBalance({

 amount: amount,

 balance: balance

 });

 }

 IDepositorVaultStorage vaultStorage = getVaultStorage();

 // the borrower can repay more than their liabilities

 // if they are paying back yield to the pool

 uint256 liabilities = Math.min(amount,

vaultStorage.getLiabilities(msg.sender));

 vaultStorage.decreaseLiabilities(msg.sender,

liabilities);

 underlyingAsset.safeTransferFrom(msg.sender,

address(this), amount);

 emit Repay(msg.sender, amount);

}

This will result in a loss of tokens for the caller.

Recommendation Consider requiring the amount parameter to be smaller or equal to
liabilities instead.

HIGH SEVERITY

Page of 155 183 DepositorVault Paladin Blockchain Security

Resolution

The amount is now silently reduced to the liabilities of the sender. It
should be noted that this is done silently which might confuse
callers. Integrations should be very careful with this behavior.

We remind the client to carefully validate this for all current
borrowing contracts and for all future ones as well, as this could be
a mistake waiting to happen if not carefully checked.

RESOLVED

Page of 156 183 DepositorVault Paladin Blockchain Security

Issue #111 Flashloan fee will be stuck in the contract

Severity

Description Whenever a flashloan is carried out, a fee is applied based on the
_flashloanFee and the size of the flashloan:

uint fee = flashFee(token, amount); 

function flashFee(address token, uint256 amount) public view

returns (uint256) {

 if (token != address(getUnderlyingAsset())) {

 revert

Errors.DepositorVault_FlashLoanTokenNotSupported(token);

 }

 return _flashLoanFee.calculate(amount);

}

This fee is then included during the repay of the flashloan:

underlyingAsset.safeTransferFrom(address(receiver),

address(this), amount + fee);

However, unlike traditional vaults, this vault does not rely on the
contract balance for the totalAssets variable, hence the fee will
not increase the vault value, essentially being stuck forever in the
contract.

*This issue was downgraded from high to medium severity because
the vault inherits the Sweepable contract in the newest commit.

Recommendation Consider calling a new donateInternal with the fee amount which
does not transfer in the amount as it is already within the contract.
Alternatively as discussed with the client, it may make more sense
to remove the flashloan logic from the core altogether and
modularize it into an authorized borrower.

Resolution

MEDIUM SEVERITY

The flashloan logic has been outsourced to the FlashLender
contract and the fee is donated to the vault.

RESOLVED

Page of 157 183 DepositorVault Paladin Blockchain Security

Issue #112 Reserve logic is redundant and can be circumvented

Severity

Description The contract implements a _reserveBPs variable which reflects how
much of the balance (getTotalAssets() -
getTotalLiabilities();) should be kept in the contract as
reserve.

Unfortunately, this security mechanism can be circumvented by
borrowing assets in steps to reduce the balance (and adding them
as assets temporarily for example).

Since the total balance can be decreased to a total minimum
(depending on the borrowLimit), the reserve value can artificially be
decreased to almost zero.

Recommendation Consider refactoring the reserve logic completely. Please note that
if the change is significant, we may need to charge a revalidation fee
for it.

Resolution

The client has increased the strictness of this check by requiring a
portion of the total supplied assets to be reserves instead. However,
it can still be bypassed using a large deposit.

PARTIALLY RESOLVED

MEDIUM SEVERITY

Page of 158 183 DepositorVault Paladin Blockchain Security

Issue #113 Potential reentrancy attack due to un-updated contract state

Severity

Description Whenever the flashLoan function within the DepositorVault is
called, the desired amount is transferred out and the callback
function of the recipient contract is called.

However, at this point, the DepositorVault is in an un-updated
state since the liabilities are not increased nor the total assets are
decreased (the latter is perfectly fine and mandatory to not
decrease).

Due to this fact, several functions including getBorrowableAmount
and getAvailableBalance return incorrect values which can
potentially lead to undesired side-effects.

Recommendation Consider implementing a mechanism that prevents this un-updated
state, i.e., increasing the liabilities before the transfer out and
decreasing them again after the callback was successful.

However, it should be noted that updating state during a flashloan
like this may do more harm than good. It is a design decision
whether these loans should be considered proper borrows or not,
and we leave that decision to the client.

During discussions with the client, it appeared to make sense to
modularize out the flashloan logic into a separate borrower for this
contract. This would make this logic a proper borrower and
accounting variables would get updated. However, it would also
reduce the attack surface of this contract as no internal flashloan
possibilities exist within it. We agree with such an externalization
but have recommended the client to do so with extreme care, as
new interactive exploits might become possible if not done
carefully.

Resolution

MEDIUM SEVERITY

The flashloan logic has been removed from the contract.

RESOLVED

Page of 159 183 DepositorVault Paladin Blockchain Security

Issue #114 Change of borrowLimit will change market state retroactively

Severity

Description Since borrowLimit impacts the getBorrowerUtilization function
which is used to determine the current rate, a change of the this
variable will change the market state retroactively.

Recommendation Consider updating the market state before the borrowLimit
change.

Resolution ACKNOWLEDGED

MEDIUM SEVERITY

Issue #115 Architectural flaw: Initial positions will not receive any yield

Severity

Description The main yield generation process happens during the repayment of
an outstanding borrow position. The donate functionality will
distribute the paid interest over time.

However, initial depositors will not receive any yield on their
positions until the creditors repay their open borrow position which
essentially allows other users to frontrun the repay call to
immediately gain interest on their newly staked position.

This will more and more become an issue if the platform scales and
events such as the potential large curve liquidation could happen.
Users could abuse these scenarios to only deposit shortly before the
liquidation and receive yield for the next six hours.

Recommendation Consider creating additional incentives to distribute yield for the
initial depositors.

Resolution

The client has indicated they understand this as a design limitation
and plan to keep a careful eye through for example interest rate
management.

ACKNOWLEDGED

MEDIUM SEVERITY

Page of 160 183 DepositorVault Paladin Blockchain Security

Issue #116 Uncapped flashloan fee

Severity

Description While we acknowledge that this architecture relies on full
governance privileges, it still might be desired to cap the upper limit
of sensitive variables like the _flashloanFee.

Recommendation Consider setting a reasonable upper limit for the variable if desired.
Since flashloaning is not a core functionality, leaving the fee
uncapped is also fine with us.

Resolution

LOW SEVERITY

This logic has been removed from this contract altogether.
Moreover, the maximum flashloan fee was set to 10% within the
FlashLender.

RESOLVED

Issue #117 borrowLimit can be set to be less than liabilities

Severity

Description setBorrowLimit allows an absolute rate to be set, however, this
rate can even be below the current liabilities, eventually
manipulating the utilization ratio to a large value.

Line 176

BPS.wrap(uint16(borrowLimit.amount)).percentOf(getTotalAsset

s());

This portion of code would overflow in case the borrow limit is set
too high. It should be noted that the relative borrow limit can be
bypassed through flash supplies at this moment.

Recommendation Consider if this is desired, if not consider only allowing an absolute
limit up to the current liabilities. Consider capping the relative
borrowLimit up to 100% BPS or at least use SafeCast.

Resolution

LOW SEVERITY

No changes to the borrow settings limit have been made.

ACKNOWLEDGED

Page of 161 183 DepositorVault Paladin Blockchain Security

Issue #118 getBorrowerUtilization will return 1e27 for limit of zero

Severity

Description Whenever an address has a borrowLimit of zero, it cannot borrow
any funds (ideally), however, this function still returns a utilization
ratio of 1e27 (100%) which could be considered inconsistent in that
scenario (since at a later stage 0 is returned in case the effective
limit is zero).

Recommendation Consider whether this makes sense and consider what variable
would be more appropriate to return in such cases. Consider being
consistent with this. Perhaps it makes sense to only return 1 in case
the account has in fact borrowed anything.

Resolution

LOW SEVERITY

The client has indicated they carefully validated this and indeed
prefer returning 0 in this case.

RESOLVED

Page of 162 183 DepositorVault Paladin Blockchain Security

Issue #119 Lack of checks-effects-interactions allows the maxSupply check to
be bypassed if the token is vulnerable to re-entrancy

Severity

Location getUnderlyingAsset().safeTransferFrom(msg.sender,

address(this), amount);

increaseTotalAssets(amount);

// we need to do the transfer before we mint so that any

reentrancy would happen before the

// assets are transferred and before the shares are minted,

which is a valid state

IDepositorVaultToken vaultToken = getToken();

vaultToken.mint(receiver, shares);

emit Deposit(msg.sender, receiver, amount, shares);

return shares;

Description Within the deposit function, transfer is executed before the
increase of the total assets. This violates the CEI pattern and makes
the function vulnerable to reentrancy attacks.

* The same issue applies to withdrawInternal.

An example exploit that could occur is that the maxSupply check is
bypassed during a reentrancy call as totalAssets would have yet to
be updated at the point of reentrancy, allowing for this check to
pass even if the outer deposit would cause it to fill up fully.

This should however only be considered as an example exploit.
When code is not strictly written within checks-effects-interactions,
the potential for exploits can be limitless and it is hard to enumerate
all of them. We therefore strongly urge the client to adhere strictly
to checks-effects-interactions.

Recommendation Consider executing the transfer after the state variable change.

Consider refactoring the flashloan logic to be more careful as it does
not presently adhere to checks-effects-interactions. No exploits
were found within this section as of present however. Do note that
for significant code changes in the resolution round, a revalidation
fee may apply.

LOW SEVERITY

Page of 163 183 DepositorVault Paladin Blockchain Security

Resolution

The transfer now happens at the very end of this function.

RESOLVED

Issue #120 The reserve assets cannot be flashloaned

Severity

Description Within the flashloan function, up to the maxFlashloan can be
borrowed. This function simply returns the getAvailableBalance
which is the difference between assets and liabilities, with the
reserve subtracted from it.

We do not see a reason why the reserve should not be borrowable
here, since these flashloans will be paid back instantly anyway.

Recommendation Consider whether it makes sense to increase the flashloan portion
to assets - liabilities instead.

Resolution

LOW SEVERITY

The flashloan function has been fully removed from this contract.
Note that this will still not be possible in the new flashloan design,
but given that it will not be easily solvable in that design, we have
marked this issue as resolved now.

RESOLVED

Page of 164 183 DepositorVault Paladin Blockchain Security

Issue #121 Gas optimizations

Severity

Description Line 93

function setFlashLoanFee(Fees.Parameters memory fee)

external onlyAdmin {

The fee can be provided as calldata instead.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

This logic has been removed.

RESOLVED

INFORMATIONAL

Issue #122 Typographical issues

Severity

Description Line 4

import { IERC3156FlashLender, IERC3156FlashBorrower } from

"../../dependencies/@openzeppelin/contracts/interfaces/

IERC3156.sol";

This import is unused and can be removed.

Line 39

IAddressRegistry private immutable _registry;

This variable should be marked as public to allow for easier
inspection within the browser.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Page of 165 183 DepositorVault Paladin Blockchain Security

2.38	 Vault/DepositorVaultMigrator

DepositorVaultMigrator is a simple helper contract that migrates funds from an
old DepositorVault to a new DepositorVault contract. It must be ensured that
the same storage contract is being used in order to keep all necessary deposits and
borrows valid.

It is necessary that the migrator upfront has the mandatory privileges to execute all
desired functionalities.

We recommend that the client carefully simulate all migrations and ideally migrate
to dummy contracts and redeploy with a fresh state, since migrating using this
mechanism is overall risky due to states being reset.

2.38.1	 Privileged Functions

• migrate

Page of 166 183 DepositorVaultMigrator Paladin Blockchain Security

2.38.2	 Issues & Recommendations

Issue #123 Yield will be lost with new vault

Severity

Description The whole balance is transferred to the new vault, including the
outstanding yield. However, the new vault’s _totalYield state
variable is set to zero, which effectively results in a loss of the
pending yield for all users and results in unused funds within the
new DepositorVault.

This issue is rated as high severity since we assume that these funds
will be left in the contract without anyone noticing. We acknowledge
that it is possible via admin interactions to withdraw and donate
them manually.

Recommendation Consider explicitly donating the current _totalYield.

Resolution

A distribute call is now made which incorporates the pending
yield into the relevant accounting variables. These accounting
variables can then be forwarded to the new contract using the new
migration context.

We recommend the client however to still be extremely careful with
any such migrations and carefully simulate them in a test
environment first. Especially since Paladin would not have audited
any of the contracts the client would migrate to.

RESOLVED

HIGH SEVERITY

Page of 167 183 DepositorVaultMigrator Paladin Blockchain Security

Issue #124 Several variables are unset after deployment

Severity

Description The following state variables are zero within the new
DepositorVault contract:

a) _reserveBPS: A malicious user can backrun the migration call
and circumvent the previous set reserve, effectively emptying
the whole contract

b) _maxSupply: Users can backrun the migration call and
circumventing the said limit

c) _flashloanFee: Users can execute a leverage transaction
without paying a flashloan fee.

Recommendation Consider setting these variables during the migration call.

Resolution

The client has introduced a configurable migration context that can
incorporate these variables alongside future variables. As always,
we recommend the client to exercise utmost care with migrations
and simulate them carefully. 
 
It is important to note that the newly introduced
whenNotInSameBlockAsDeposit modifier can be circumvented in
the same block a migration happens.

RESOLVED

MEDIUM SEVERITY

Page of 168 183 DepositorVaultMigrator Paladin Blockchain Security

Issue #125 Swept funds are sent to the wrong vault

Severity

Description After sweeping the funds to the treasury while migrating the vault,
those funds should be sent to the new deployed vault as can be
seen in the following snippet:

ITreasury treasury = _registry.getTreasury();

treasury.transfer(address(underlyingAsset),

address(depositorVault), balance);

However, the funds are actually sent back to the old vault instead of
the new one.

Recommendation Consider sending the swept funds to the new vault instead of the
old one:

 

ITreasury treasury = _registry.getTreasury();

treasury.transfer(address(underlyingAsset),

address(depositorVaultUpgrade), balance);

Resolution

MEDIUM SEVERITY

RESOLVED

Page of 169 183 DepositorVaultMigrator Paladin Blockchain Security

Issue #126 Typographical issues

Severity

Description L11 

import { AddressRegistryExtensions } from "../../libraries/

AddressRegistryExtensions.sol";

This import is a duplicate and can be removed.

L85

function revokeDefaultAdmin(address source, address dest)

private

L100

function revokeAdmin(address source, address dest) private

These functions are unused and can be removed.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

RESOLVED

Issue #127 Vendor and Purchaser are still granted rights

Severity

Description During the migration, both contracts are granted the auth status.
However, since the FlashLender logic is not outsourced, there is no
necessity to grant this status to both contracts.

Recommendation Consider removing that logic.

Resolution RESOLVED

INFORMATIONAL

Page of 170 183 DepositorVaultMigrator Paladin Blockchain Security

2.39	 Vault/DepositorVaultStorage

DepositorVaultStorage keeps track of the borrow limits and liabilities for the
DepositorVault contract.

Slight gas optimizations are possible by marking certain math operations as
unchecked but Paladin did not explicitly create issues for these due to the non gas-
critical nature of the clients deployment chain.

2.39.1	 Privileged Functions

• setBorrowLimit

• increaseLiabilities

• decreaseLiabilities

2.39.2	 Issues & Recommendations

No issues found. 

Page of 171 183 DepositorVaultStorage Paladin Blockchain Security

2.40	 Vault/DepositorVaultToken

DepositorVaultToken is the ERC20 token receipt which will be minted on each
deposit in the DepositorVault contract. It represents the amount a user has staked
into the DepositorVault, including the accumulated yield.

It can be also used within the Portfolio as collateral, representing the said share
value.

2.40.1	 Privileged Functions

• pause

• resume

• mint (only vault)

• burn (only vault)

2.40.2	 Issues & Recommendations

No issues found. 

Page of 172 183 DepositorVaultToken Paladin Blockchain Security

2.41	 Vault/LinearDistributedYieldVault

LinearDistributedYieldVault is a yield-bearing implementation which is used
for the Custodian and DepositorVault contract.

It allows for token donation to the vault via the donate function and the donated
amount is then distributed over the course of 6 hours to all stakers by increasing the
_totalAssets variable.

Page of 173 183 LinearDistributedYieldVault Paladin Blockchain Security

2.41.1	 Issues & Recommendations

Issue #128 Non-configurable _distributionWindow may backfire in the future

Severity

Description _distributionWindow is initialized in the constructor and cannot
be updated after.

This value should have a setter function to be updated only by
Ambit, if necessary. Having a fixed _distributionWindow might be
not the optimal in the future and in the current state, there should
be a re-deployment to update it

Recommendation Consider adding a function which also distributes the Yield before
updating the window, so the new window does not affect the
unclaimed yield:

function setDistributionWindow(uint256 distributionWindow)

external onlyOwner {  

(uint totalAssets, uint totalYield) = distributeYield();

 _totalAssets = totalAssets;

 _totalYield = totalYield + amount;

 _distributionTimestamp = block.timestamp;

 _distributionWindow = distributionWindow;

}

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 174 183 LinearDistributedYieldVault Paladin Blockchain Security

Issue #129 The distribution rate is counter-intuitively non-linear depending on
when distributeYield gets called

Severity

Description Due to the design pattern of the LinearDistributedYieldVault,
the actual distribution rate is in fact non-linear. This is because
whenever yield is distributed, the remaining yield is re-compounded
over the distribution window. This means that even though this
remaining yield was supposed to be fully distributed in a timespan
quicker than the window at the time of an intermediary distribution,
it gets reset to a duration equal to the window.

This has the effect that any yield distribution directly impacts the
distribution rate for the remaining tokens yet to be distributed.

Recommendation This is a fundamental design trade-off. We do not have a
recommendation as solutions which adhere to a real linear
distribution might require expensive iterative logic.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 175 183 LinearDistributedYieldVault Paladin Blockchain Security

Issue #130 Lack of checks-effects-interactions

Severity

Description Within the donate function, transfer is executed before the
effects. This violates the CEI pattern and can result in reentrancy
vulnerabilities:

function donate(uint256 amount) virtual public {

 if (amount == 0) {

 return;

 }

 getUnderlyingAsset().safeTransferFrom(msg.sender,

address(this), amount);

 (uint totalAssets, uint totalYield) = distributeYield();

 _totalAssets = totalAssets;

 _totalYield = totalYield + amount;

 _distributionTimestamp = block.timestamp;

 emit Donate(msg.sender, amount);

}

Recommendation Consider executing transfer after the effects

Resolution RESOLVED

INFORMATIONAL

Page of 176 183 LinearDistributedYieldVault Paladin Blockchain Security

Issue #131 Gas optimizations

Severity

Description _distributionWindow should be marked as immutable.

——

The distributeYield logic re-uses a lot of storage variables,
reading from them multiple times and wasting some gas.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution RESOLVED

INFORMATIONAL

Issue #132 Typographical issues

Severity

Description “elapsed” is mis-spelled as “ellapsed” throughout the contract.

——

_distributionWindow, _totalAssets and
_distributionTimestamp should be marked as public.

——

A div-before-mul occurs within distributeYield which slightly
lowers precision, this is however fine in this instance as precision is
not critical.

Recommendation Consider fixing the typographical issues.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 177 183 LinearDistributedYieldVault Paladin Blockchain Security

2.42	 Vault/Vault

Vault handles the share calculation logic for DepositorVault and Custodian. It
also returns the current exchange rate which displays the amount of assets per
share, denominated in the decimals of the underlying asset.

For example, for USDT as an underlying asset, an exchange rate of 1.2e18 means
that each user will receive 1.2e18 USDT per 1e18 shares.

It should be noted that the contract does not function properly for vaults which can
have their share value decrease over time. Such vaults are luckily not present at this
time within the Ambit ecosystem.

convertToShares and convertToAssets may not return the actual values from
depositing/withdrawing. An example is in convertToAssets where the vault has
zero shares but already value through donations. In this case, the initial shares will
have a value higher than 1:1 due to this residual vault value.

Finally, there are some inconsistencies on when convertToAssets,
convertToShares and getExchangeRate return 0 or revert. For example,
getExchangeRate is zero if totalShares is 0, while convertToAssets and
convertToShares would utilise an exchange rate of 1:1 in this instance. Developers
should be extremely careful with blindly calling them and go over all exception
cases carefully (e.g. zero values of shares or assets etc.).

Any contracts building on top of Vault.sol should not support tokens with fees on
transfer nor rebasing tokens. Any non-standard ERC20 token should be dealt with
with extreme caution and ideally wrapped in a simpler alternative. Reentrancy
tokens should likewise be avoided.

The functions of Vault.sol appear to be inspired by ERC4626 but it should be
noted that the contract and its dependencies is not compliant with this standard. 

Page of 178 183 Vault Paladin Blockchain Security

2.42.1	 Issues & Recommendations

Issue #133 Share distribution can be manipulated by first depositor

Severity

Description The first depositor can manipulate the shares of all subsequent
depositors under the very rare circumstance where no other users
deposit within the first six hours after deployment

A user could therefore deposit 1 WEI of the baseAsset and
immediately donate a large amount of baseAsset to the vault which
linearly increases the amount of _totalAssets within the vault.

After some time, depending on the size of the donation, the amount
of _totalAssets will be such a high value that results in rounding
down of subsequent depositors' shares.

Consider the following scenario:

1) Alice deposits 1 WEI of baseAsset to the vault, Alice will receive
exactly 1 share

2) Alice calls donate with 10 000e6 - 1 WEI

3) After 6 hours, the amount of totalAssets in the vault are
exactly 10000e6

4) Bob deposits 19 000e6 tokens, therefore, the following share
calculation will be done:  
19000e6 * 1 / 10000e6 = 1.9

Since it rounds down, Bob will only receive 1 share, instead of the
1.9 shares he should have received. 
 
This issue is mitigated within the DepositorVault contract due to
the implementation of the minSharesOut parameter. However, it
still exist for the Custodian/Portfolio contracts.

HIGH SEVERITY

Page of 179 183 Vault Paladin Blockchain Security

Recommendation Consider either refactoring the vault concept to match with
OpenZeppelin’s virtual shares concept, or mint a fixed amount of
shares to 0xde4d during the first mint.

It should be noted that the latter option does not completely fix the
issue but makes it harder to execute it. Combined with the fact that
it is highly unlikely that no one deposits within the first 6 hours, we
seem this fix as sufficient.

Do note that for significant code changes in the resolution round, a
revalidation fee may apply.

Resolution

This contract is no longer used by the Custodian.

RESOLVED

Page of 180 183 Vault Paladin Blockchain Security

Issue #134 Gas optimizations

Severity

Description Line 41

uint256 scalar = 10 ** getUnderlyingAsset().decimals();

scalar can be marked as an immutable variable, alongside the raw
underlying decimals. This avoids fetching these values every time
this function is called, saving on gas as decimals is supposed to be
constant. Any token with a mutable decimals value would be grossly
unsupported regardless, which means that consistently caching the
decimals value throughout the codebase for all business logic would
even be a security improvement for such tokens.

Consistently caching the decimals throughout the system also
means that there is less reliance on this function never reverting. If
this function starts reverting due to a paused token for example,
this could hinder a lot of critical functionality (e.g. solvability checks
for liquidations!). We therefore strongly urge the client to use an
internal representation of this value exclusively throughout the
system.

Recommendation Consider implementing the gas optimizations mentioned above.

Resolution

The decimals variable has been cached in this contract.

RESOLVED

INFORMATIONAL

Page of 181 183 Vault Paladin Blockchain Security

2.42	 Vault/Flashlender

FlashLender implements the flashloan logic which originally resided within the
DepositorVault contract. It allows authorized addresses by taking out a flashloan
via borrowing and repaying from the DepositorVault contract.

A whitelist feature was added which allows for fee-less borrowing. Non-whitelisted
borrowers will have to pay a flashloan fee, which is then donated to the
DepositorVault as yield-bearing instrument.

2.42.1	 Issues & Recommendations

No issues found. 

Page of 182 183 FlashLender Paladin Blockchain Security

Page of 183 183 FlashLender Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 Global Issues
	1.3.2 AddressRegistryExtensions
	1.3.3 Errors
	1.3.4 Fees
	1.3.5 InterestMath
	1.3.6 Normalizer
	1.3.7 PercentageMath
	1.3.8 PortfolioAssetExtensions
	1.3.9 RayMath
	1.3.10 USDMath
	1.3.11 AddressRegistry
	1.3.12 AssetStorage
	1.3.13 Overseer
	1.3.14 Treasury
	1.3.15 DynamicInterestRateModel
	1.3.16 FixedInterestRateModel
	1.3.17 Liquidator
	1.3.18 Market
	1.3.19 MarketLiquidation
	1.3.20 MarketStorage
	1.3.21 DepositorVaultMarketplaceAdapter
	1.3.22 Marketplace
	1.3.23 SpotMarketMarketplaceAdapter
	1.3.24 ChainlinkAggregatorPriceOracle
	1.3.25 DepositorVaultTokenPriceOracle
	1.3.26 FallbackPriceOracle
	1.3.27 Custodian
	1.3.28 CustodianMigrator
	1.3.29 Portfolio
	1.3.30 PortfolioStorage
	1.3.31 AdminAccessControl
	1.3.32 AuthorizedAccessControl
	1.3.33 AccessControlList
	1.3.34 AmbitToken
	1.3.35 Pausable
	1.3.36 Sweepable
	1.3.37 DepositorVault
	1.3.38 DepositorVaultMigrator
	1.3.39 DepositorVaultStorage
	1.3.40 DepositorVaultToken
	1.3.41 LinearDistributedYieldVault
	1.3.42 Vault
	1.3.43 Flashlender

	2 Findings
	2.1 Global Issues
	2.1.1 Issues & Recommendations

	2.2 Libraries/AddressRegistryExtensions
	2.2.1 Issues & Recommendations

	2.3 Libraries/Errors
	2.3.1 Issues & Recommendations

	2.4 Libraries/Fees
	2.4.1 Issues & Recommendations

	2.5 Libraries/InterestMath
	2.5.2 Issues & Recommendations

	2.6 Libraries/Normalizer
	2.6.1 Issues & Recommendations

	2.7 Libraries/PercentageMath
	2.7.1 Issues & Recommendations

	2.8 Libraries/PortfolioAssetExtensions
	2.8.1 Issues & Recommendations

	2.9 Libraries/RayMath
	2.9.1 Issues & Recommendations

	2.10 Libraries/USDMath
	2.10.1 Issues & Recommendations

	2.11 Core/AddressRegistry
	2.11.1 Privileged Functions
	2.11.2 Issues & Recommendations

	2.12 Core/AssetStorage
	2.12.1 Privileged Functions
	2.12.2 Issues & Recommendations

	2.13 Governance/Overseer
	2.13.1 Privileged Functions
	2.13.2 Issues & Recommendations

	2.14 Governance/Treasury
	2.14.1 Privileged Functions
	2.14.2 Issues & Recommendations

	2.15 Market/DynamicInterestRateModel
	2.15.1 Issues & Recommendations

	2.16 Market/FixedInterestRateModel
	2.16.1 Privileged Functions
	2.16.2 Issues & Recommendations

	2.17 Market/Liquidator
	2.17.1 Privileged Functions
	2.17.2 Issues & Recommendations

	2.18 Market/Market
	2.18.1 Privileged Functions
	2.18.2 Issues & Recommendations

	2.19 Market/MarketLiquidation
	2.19.1 Privileged Functions
	2.19.2 Issues & Recommendations

	2.20 Market/MarketStorage
	2.20.1 Privileged Functions
	2.20.2 Issues & Recommendations

	2.21 Marketplace/DepositorVaultMarketplaceAdapter
	2.21.1 Issues & Recommendations

	2.22 Marketplace/Marketplace
	2.22.1 Issues & Recommendations

	2.23 Marketplace/SpotMarketMarketplaceAdapter
	2.23.1 Issues & Recommendations

	2.24 Oracle/ChainlinkAggregatorPriceOracle
	2.24.1 Issues & Recommendations

	2.25 Oracle/DepositorVaultTokenPriceOracle
	2.25.1 Issues & Recommendations

	2.26 Oracle/FallbackPriceOracle
	2.26.1 Issues & Recommendations

	2.27 Portfolio/Custodian
	2.27.1 Privileged Functions
	2.27.2 Issues & Recommendations

	2.28 Portfolio/CustodianMigrator
	2.28.1 Issues & Recommendations

	2.29 Portfolio/Portfolio
	2.29.1 Privileged Functions
	2.29.2 Issues & Recommendations

	2.30 Portfolio/PortfolioStorage
	2.30.1 Privileged Functions
	2.30.2 Issues & Recommendations

	2.31 Security/AdminAccessControl
	2.31.1 Privileged Functions
	2.31.2 Issues & Recommendations

	2.32 Security/AuthorizedAccessControl
	2.32.1 Issues & Recommendations

	2.33 Security/AccessControlList
	2.33.1 Issues & Recommendations

	2.34 Tokens/AmbitToken
	2.34.1 Privileged Functions
	2.34.2 Issues & Recommendations

	2.35 Utils/Pausable
	2.35.1 Privileged Functions
	2.35.2 Issues & Recommendations

	2.36 Utils/Sweepable
	2.36.1 Privileged Functions
	2.36.2 Issues & Recommendations

	2.37 Vault/DepositorVault
	2.37.1 Privileged Functions
	2.37.2 Issues & Recommendations

	2.38 Vault/DepositorVaultMigrator
	2.38.1 Privileged Functions
	2.38.2 Issues & Recommendations

	2.39 Vault/DepositorVaultStorage
	2.39.1 Privileged Functions
	2.39.2 Issues & Recommendations

	2.40 Vault/DepositorVaultToken
	2.40.1 Privileged Functions
	2.40.2 Issues & Recommendations

	2.41 Vault/LinearDistributedYieldVault
	2.41.1 Issues & Recommendations

	2.42 Vault/Vault
	2.42.1 Issues & Recommendations

	2.42 Vault/Flashlender
	2.42.1 Issues & Recommendations

