

Summary
 Audit Firm Guardian

 Prepared By Daniel Gelfand, Owen Thurm, Kiki, 0xKato, Kristian Apostolov, 0xScourgedev

 Client Firm Ambit Finance

 Final Report Date December 6, 2023

Audit Summary

Ambit Finance engaged Guardian to review the security of its borrowing and lending platform. From

the 20th of November to the 6th of December, a team of 6 auditors reviewed the source code in

scope. All findings have been recorded in the following report.

Notice that the examined smart contracts are not resistant to internal exploit. For a detailed

understanding of risk severity, source code vulnerability, and potential attack vectors, refer to the

complete audit report below.

🔗 Blockchain network: BNB Smart Chain

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/AmbitPoCs

2

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Invariants Assessed …………..…………………………….………………………... 9

Findings & Resolutions …………..…………………………….……………………… 13

Addendum

Disclaimer …………………………………………………………………..…………..… 82

About Guardian Audits ………………………………..………………………………… 83

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Ambit Finance

Language Solidity

Codebase https://github.com/ambitfi/ambitfi-contracts

Commit(s) 89a4abaa35df3e34b472c5128fe2e960a7a31a0d

Delivery Date December 6, 2023

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 3 0 0 0 0 3

 ● High 5 0 0 1 0 4

 ● Medium 16 0 0 5 0 11

 ● Low 40 0 0 16 0 24

Audit Scope & Methodology

5

ID File SHA-1 Checksum(s)

PAE PortfolioAssetExtensions.sol dd355c5b77db2bda3fd27929a6dd2295a0ca906b

PH PortfolioHooks.sol ab2e6707d07ab6dedd4ae0f8ab47b0b6abd5727f

NMLZ Normalizer.sol 607793cf512286d43cea084a2c5c6025b9f51c2c

FEE Fees.sol 3439cb8248914efdc4f81828d4822642ec452df6

ERR Errors.sol 8a9646adcc0140c0c35289db47b37c961b8b74a1

PMATH PercentageMath.sol 68729250f86124dfc0e64a1ef6c7aec084de4560

IMATH InterestMath.sol 8af842b520ef68c7be7ff0e3f09de5ab985681eb

UMATH USDMath.sol 3f62cb6aae51225cc2ce39472b82aa2ab24f34f3

EPCHL EpochLib.sol 3f0ad5f39e73b3b10d3f4db52ed0f3bac0f8779e

ARE AddressRegistryExtensions.sol 154520ed6d96cb2837ba8e43645dcb90b3a6eafb

REL RewardEpochLib.sol fe61ea8ce3412abd4e3a18d642a402d1d9d50950

TRH TokenRewardHooks.sol 476643d7aa43db0929fb0080257d699b9d408d78

ADRG AddressRegistry.sol d5a72cf26b9480ab22ebfa433511b18e3084a41c

ASRG AssetStorage.sol 41d75259266cb1d75d8a293c1b3f131073acc5d8

ADAC AdminAccessControl.sol cecf76e82542a999c804acc50ca355ee0c5ade4b

ACL AccessControlList.sol a2f8602f74ae86d7de47bb2d379189e59b77a4f1

AUAC AuthorizedAccessControl.sol 3f667aba5b038be3a0f642c65184fe7c3e7da66f

DVMA DepositorVaultMarketplaceAdapter.sol 839d37033c2f02b9b497cfc1783323b00dd42ade

MKTV MarketplaceVendor.sol d2fa0de8e20730bad1467a3603a8d8d4c8851141

SMMA SpotMarketMarketplaceAdapter.sol e6b43c9f4da3db308bc7fe4efde9a33b44bf0669

Audit Scope & Methodology

6

ID File SHA-1 Checksum(s)

MKTP MarketplacePurchaser.sol 6e4ea5a2201163a31669fb0a00aaf18ea91107cd

FPO FallbackPriceOracle.sol bfb1e4835c03a9e1921db896dc89fe0959fe17dc

DVTPO DepositorVaultTokenPriceOracle.sol dd337db7ce837b5ceb8a3dcbecc896974ac46a18

CAPO ChainlinkAggregatorPriceOracle.sol ff3f15503858a7ff87d7c726dd6ca32fba4aebc2

UNIPO UniswapV2PriceOracle.sol e954dad0fc863696138f419610863f8f0b67f7ae

PAUSE Pausable.sol 995036d3ed4894ed0c9efcbad7ebf7542faa48af

MG Migratable.sol 0f95957b34ee715c0482ec4c8f2c8447fe2a2d5f

SWEEP Sweepable.sol fa2d70018ecd0167aec108a5f368e729fd6e8fcf

BM BoostModule.sol 1a8fe17c7ef48e96bad195c2fe08a8be062ea222

LOTYL LoyaltyLib.sol 2c0a2a3011ad14618232f3617230f1da471cd2a6

LOTYS LoyaltyStorage.sol 5ce12bb41316eec02454fac27462130ff05baec2

FLBM FirstLoanBoostModule.sol 91c4c7c4d633e1ffcf72b56f8c74b54add457d7d

LOTY Loyalty.sol 142852bc6d2fa7a588112108504a0a8b162f254d

LOTYH LoyaltyHooks.sol d32714d89ab4fd31a7b02c01c4e37a20116a9b25

GOV Governor.sol 51f01dd3a41eee439d37da3debd82575ddb4b015

EXE Executable.sol 9fda5e700e81c238f1b959776dbd14aae8809289

TRSY Treasury.sol 7b8ea901d40aaabba9cee554e7d6e19e17693cd9

PORTS PortfolioStorage.sol be95f55ccd155c16ddc6b2d9e12f35fb3cd5686d

CM CustodianMigrator.sol 596cbdfbee6a3123beee0f600c465d24e6c6a303

CTDN Custodian.sol 9aeab147612cc97c289f769192878e0210eac0b4

Audit Scope & Methodology

7

ID File SHA-1 Checksum(s)

PTFLO Portfolio.sol e8cb51655cf0b803986d2cb512025c20fa3f713b

YBC YieldBearingCustodian.sol d5ce9ac5f36bc6377add4eb85cf61dc124d7de02

BC BaseCustodian.sol e448c349aaf174fc693057b06ca9a24044ae8c4d

LDTR Liquidator.sol 60eef99d467120b450e3989202c6df8785c8a9a9

MKTS MarketStorage.sol 948326d873f54814b0b127eb482daffa216c4a9d

FIRM FixedInterestRateModel.sol f9b1322ff9f862d7089ba1371c1998ade125620f

DIRM DynamicInterestRateModel.sol d3269e75f9607dc1b086058ab0418a5605ceceda

DMOD DiscountModel.sol 2a9963e0ca5ffb2d8f700a12d013cb246db08e05

MKT Market.sol a8ed84717f2280cb1b0079c9908c00795ddf8f63

ML MarketLiquidation.sol d1d7972cab1cdba6b6c181453574ec87f618d647

VEST TokenVesting.sol bdcf611870493cd2a002c9e3d10fce8da3c6989f

LDYV LinearDistributedYieldVault.sol 6adb8b9d5d25582686b71c26dac177c612ad188f

DVT DepositorVaultToken.sol d238abcda2f74db5357163cdae17ff35defa8099

YVLT YieldVault.sol b04411e7b6eca19449de094471f1c2e64a316dac

SNAP SnapshotLib.sol d4fc981e2182db2f9592934af63db4c4474592c3

DVM DepositorVaultMigrator.sol 346ae1606b06d5edf019cefe5e8b52bcf078a71c

DVS DepositorVaultStorage.sol 9617c4862b8560a32222a3869e44d2610ff62b57

VLT Vault.sol c23250c37b997e886c7110cf0a1879803511b749

FL FlashLender.sol 013755409df14be8e859720ba9ada1efd7fd343a

DVLT DepositorVault.sol 206e4ec73286550a5a7fd0056696cf169e2748cb

8

Vulnerability Classifications

Methodology
The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.
● Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Audit Scope & Methodology

Vulnerability Level Classification

 ● Critical Easily exploitable by anyone, causing loss/manipulation of assets or data.

 ● High Arduously exploitable by a subset of addresses, causing loss/manipulation of assets or data.

 ● Medium Inherent risk of future exploits that may or may not impact the smart contract execution.

 ● Low Minor deviation from best practices.

Invariants Assessed

9

During Guardian’s review of Ambit’s Borrowing and Lending platform, fuzz-testing with
Echidna was performed on the protocol’s main functions. Given the dynamic interactions and
the potential for unforeseen edge cases in the protocol, fuzz-testing was imperative to verify
the integrity of several system invariants.

Throughout the engagement the following invariants were assessed for a total of
15,000,000+ runs with a prepared Echidna fuzzing suite.

ID Description Tested Passed Run Count

GENERAL-01 Does not revert with underflow/overflow ✅ ❌ -

HS-01 Health score is increasing after supply ✅ ✅ 7,000,000+

HS-02 Health score is decreasing after withdraw ✅ ✅ 7,000,000+

HS-03 Health score is decreasing after borrow ✅ ✅ 7,000,000+

HS-04 Health score is increasing after repay ✅ ✅ 7,000,000+

HS-05 Health score is increasing, or 0 after successful
liquidation ✅ ❌ -

HS-06 Health score is decreasing after borrow ✅ ✅ 7,000,000+

HS-07
Health score is above
UNHEALTHY_HEALTH_SCORE_THRESHOLD after
borrow

✅ ✅ 7,000,000+

HS-08
Health score is below
UNHEALTHY_HEALTH_SCORE_THRESHOLD before
successful liquidation

✅ ✅ 7,000,000+

HS-09
Liquidation always succeeds when health score is
below UNHEALTHY_HEALTH_SCORE_THRESHOLD
before liquidation

✅ ❌ -

Invariants Assessed

10

ID Description Tested Passed Run Count

PORT-01 User can not withdraw more of one token than
supplied ✅ ✅ 7,000,000+

LIAB-01 Liabilities are decreasing after liquidation ✅ ✅ 7,000,000+

LIAB-02 Liabilities of a user is increasing the exact amount
that was borrowed ✅ ✅ 7,000,000+

LIAB-03 Liabilities of a user is decreasing after getting
liquidated ✅ ✅ 7,000,000+

LIAB-04 Liquidation always fails if a user's liabilities is 0 ✅ ✅ 7,000,000+

LOYAL-01 Total loyalty points is equal to the sum of all loyalty
points of all users ✅ ❌ -

LOYAL-02 The exact burned amount is added to the user
balance2 after burn ✅ ✅ 5,000,000+

LOYAL-03 Claiming points sets getClaimablePoints to 0 ✅ ✅ 5,000,000+

LOYAL-04 Loyalty boost can only be claimed once ✅ ✅ 5,000,000+

LOYAL-05
Loyalty points for a user should decrease or be

equal after withdrawing Ambit
✅ ✅ 5,000,000+

LOYAL-06
Sum of pending, vesting, accrued loyalty points for a

user should increase after supplying Ambit
✅ ✅ 5,000,000+

Invariants Assessed

11

ID Description Tested Passed Run Count

REWARD-01 Rewards claimed from claim must be equal to the
points predicted by getClaimableRewards ✅ ✅ 5,000,000+

VLTREV-01 previewRedeem() does not revert for reasonable
values ✅ ✅ 15,000,000+

VLTREV-02 previewWithdraw() does not revert for reasonable
values ✅ ✅ 15,000,000+

VLTREV-03 previewDeposit() does not revert for reasonable
values ✅ ✅ 15,000,000+

VLTREV-04 getTotalAssets() never reverts ✅ ✅ 15,000,000+

VLTACCG-01 Redeem must deduct shares from user ✅ ✅ 15,000,000+

VLTACCG-02 Redeem must credit underlying asset to user ✅ ✅ 15,000,000+

VLTACCG-03
Redeem must credit greater than or equal to the
number of underlying asset predicted by
previewRedeem

✅ ✅ 15,000,000+

VLTACCG-04 Withdraw must deduct shares from user ✅ ✅ 15,000,000+

VLTACCG-05 Withdraw must credit underlying asset to the user ✅ ✅ 15,000,000+

VLTACCG-06 Withdraw must deduct less than or equal to the
number of shares predicted by previewWithdraw ✅ ✅ 15,000,000+

Invariants Assessed

12

ID Description Tested Passed Run Count

VLTACCG-07 Deposit must deduct underlying asset from user ✅ ✅ 15,000,000+

VLTACCG-08 Deposit must credit shares to user ✅ ✅ 15,000,000+

VLTACCG-09 Deposit must mint greater than or equal to the
number of shares predicted by previewDeposit ✅ ✅ 15,000,000+

VLTFREE-01 Underlying asset is never seen as withdrawn for free
using previewRedeem ✅ ✅ 15,000,000+

VLTFREE-02 Underlying asset is never seen as withdrawn for free
using previewWithdraw ✅ ✅ 15,000,000+

VLTFREE-03 Shares are never seen as minted for free using
previewDeposit ✅ ✅ 15,000,000+

VLTFREE-04 Underlying asset is never withdrawn for free using
withdraw ✅ ✅ 15,000,000+

Findings & Resolutions

13

ID Title Category Severity Status

SNAP-1 Cardinality Errantly Incremented Logical Error ● Critical Resolved

LOTY-1 All Loyalty Rewards Can Be
Stolen Logical Error ● Critical Resolved

LOTY-2 Total Points Does Not Match
Sum Of User Points Logical Error ● Critical Resolved

LDTR-1
Small Positions Backed By The
Vault Token Cause Liquidations
To Revert

Logical Error ● High Resolved

GLOBAL-1 Snapshot System Prone To
Instant Balance Change

Protocol
Manipulation ● High Resolved

LOTY-3
Calling claimBoost Before
Claiming Points Breaks The
User's Boost

Logical Error ● High Resolved

ML-1 Health Score Decreases After
Liquidation Logical Error ● High Resolved

GLOBAL-2 USDT Treated as One Dollar Logical Error ● High Acknowledged

ML-2
findLargestPosition Uses
Ordinary Price Instead Of
Discounted

Logical Error ● Medium Acknowledged

TRH-1 Stored Custodian Becomes
Invalid Upon Migration Migration ● Medium Resolved

TRH-2 The Balance Of Any Disabled
Token Can Get Hijacked Access Control ● Medium Resolved

ML-3 User Loses More Collateral Than
Necessary Logical Error ● Medium Acknowledged

ML- 4
findLargestPosition Exposes
Liquidator to Unnecessary
Slippage

Logical Error ● Medium Acknowledged

Findings & Resolutions

14

ID Title Category Severity Status

MKT-1 User Can Avoid Accrued Interest Protocol
Manipulation ● Medium Resolved

MKT-2 MarketState Not Updated Prior
To Calling pause/unpause Logical Error ● Medium Resolved

LDTR-2 Possible Lack Of Incentive For
Liquidations Incentives ● Medium Resolved

MKT-3 discountModel Updated Before
Liabilities Accrue Logical Error ● Medium Resolved

TRH-3 Token Rewards DoS DoS ● Medium Resolved

TRH-4 Rewards During A Pause For A
Reward Token Can Be Accrued Logical Error ● Medium Resolved

TRH-5 Invalid Result Returned From
getClaimableRewards Logical Error ● Medium Resolved

SNAP-2 Untruncated Timestamps Are
Unmatchable Logical Error ● Medium Resolved

YBC-1 Invalid totalAssets Validation Logical Error ● Medium Resolved

MKTV-1 Deleveraging Does Not Consider
The Flash Fee Configuration ● Medium Acknowledged

LDTR-3 Liquidations Prevented By
Slippage

Protocol
Manipulation ● Medium Acknowledged

LOTY-4
User Points Not Getting Claimed
In accruePoints Loses Them
Rewards

Logical Error ● Low Acknowledged

MKT-4 Discounts Do Not Apply Without
An Update To Liabilities Logical Error ● Low Acknowledged

Findings & Resolutions

15

ID Title Category Severity Status

PTFLO-1 User Can Withdraw And Supply In
The Same Block Logical Error ● Low Acknowledged

ML-5 User's Discount Not Considered
On Liquidation Logical Error ● Low Acknowledged

MKT-5
Discounts Favor Borrowers With
A Higher Liabilities/Principal
Ratio

Logical Error ● Low Resolved

UNIPO-1 Uniswap Oracle Manipulation Oracle
Manipulation ● Low Resolved

LDTR- 4 MIN_SLIPPAGE_ALLOWED is
never used

Superfluous
Code ● Low Resolved

PTFLO-2 Portfolio Hooks Prone To
Reentrancy Reentrancy ● Low Acknowledged

DIRM-1 Current Market Liabilities Used
For Utilization Logical Error ● Low Acknowledged

LDTR-5 Liquidations Halted Warning ● Low Acknowledged

MKT-6 Users Are Charged Interest On
Fee Amounts

Unexpected
Behavior ● Low Acknowledged

LOTY-5 Superfluous Pending Rewards
Calculation

Superfluous
Code ● Low Resolved

GLOBAL-3 Interest Fee Design Protocol Design ● Low Resolved

MKT-7 Typo Typo ● Low Resolved

TRH-6 Donations Lost When
totalShares Is 0 Lost Rewards ● Low Acknowledged

Findings & Resolutions

16

ID Title Category Severity Status

ML-6 Blacklisted Accounts May Avoid
Liquidation Blacklist ● Low Acknowledged

VEST-1 Typo Typo ● Low Resolved

DVLT-1 No Basis Point Validation For
setBorrowLimit Validation ● Low Resolved

TRH-7 Redundant Accruals Optimization ● Low Resolved

TRH-8 Superfluous tokenReward.index
Update

Superfluous
Code ● Low Resolved

YBC-2 Lacking Migration Logic Configuration ● Low Resolved

YBC-3 Lack Of Donation Fee In The
YieldBearingCustodian Protocol Fees ● Low Acknowledged

DVM-1 Depositor Vault Key
Re-computed Best Practices ● Low Resolved

DVM-2 Redundant Inheritance Superfluous
Code ● Low Resolved

YVLT-1 Invalid 0 Price Returned From
getExchangeRate

Unexpected
Behavior ● Low Resolved

SNAP-3 Unnecessary Truncate Call Optimization ● Low Resolved

ML- 7 Users can be Liquidated for More
than Needed Documentation ● Low Acknowledged

SNAP-4 Unexpected Found Value
Returned

Unexpected
Behavior ● Low Acknowledged

Findings & Resolutions

17

ID Title Category Severity Status

DMOD-1 Points Discount Extremely Low Logical Error ● Low Resolved

MKTP-1 Late Validation Validation ● Low Resolved

DVLT-2 safeTransferFrom Should Occur
Before Updates Reentrancy ● Low Resolved

SMMA-1 Invalid UniswapV2 Expiration
Timestamp Logical Error ● Low Resolved

DMOD-2 Precision Loss Can Lead to Loss
of Loyalty Points Precision ● Low Resolved

DMOD-3 Incorrect Integer Casting Logical Error ● Low Resolved

LDYV-1 Wrong Event Emission Logical Error ● Low Resolved

LDYV-2 Vault Distributes Yield Even With
No Shares Present Logical Error ● Low Acknowledged

DVLT-3
Vault Migration Sets The First
Snapshot With The Newest
Values

Logical Error ● Low Acknowledged

ML-8 Very Small Positions In <8
Tokens Cannot Be Liquidated Logical Error ● Low Acknowledged

MKT-8 Incorrect Order Of Operations Optimization ● Low Resolved

GLOBAL-4 Disabling Hooks May Lead To
Accounting Inaccuracies Logical Error ● Low Resolved

SNAP-1 | Cardinality Errantly Incremented

Description

In the write function, if the cardinality is less than the size then the cardinality is always incremented,
regardless of if a new index was written to or not.

This perturbs the checking of the oldest snapshot on line 68 in the find function as well as everything
in the search function.

Recommendation

Only increment the cardinality when a new index is written to in the write function.

Resolution

Ambit Team: The issue was resolved in commit ac233d2.

18

Category Severity Location Status

Logical Error ● Critical SnapshotLib.sol: 49 Resolved

LOTY-1 | All Loyalty Rewards Can Be Stolen

Description

The functions supply() and withdraw() call accrueRewards() before mutating the points balance of a
user. burnTokens() does not which allows someone to claim an abnormally large portion of the
rewards by abusing their rewardsIndex and an artificially high balance of points that did not get
accrued when incremented.

This allows such a user to burn AMBT just before they withdraw and receive much more rewards
than they should. This will also brick the reward claim process for other users as the reward token
balance of the contract will not be enough to cover for their rewards.

Recommendation

Call accrueRewards() before mutating the user's balance2 in burnTokens().

Resolution

Ambit Team: The issue was resolved in commit 277fba3.

19

Category Severity Location Status

Logical Error ● Critical Loyalty.sol Resolved

PoC

LOTY-2 | Total Points Does Not Match Sum Of User Points

Description

When a user burns their Ambit, they are immediately credited with points that experience a 5x
multiplier. However, if a user burns less than 1e7 of an Ambit, the total.points will not increment:
total.points += LoyaltyLib.boostMul(amount.toUint64(), LoyaltyLib.BURN_BOOST);

This is because in the boostMul function, the returned point value will be truncated to 0: points /
POINT_DENOMINATOR * boost / DEFAULT_BOOST; A user could maliciously take advantage of this
by initially burning more than 1e7 Ambit. This will be reflected in both the total and the user’s point
balances as there will not be truncation.

The user can then burn less than 1e7 Ambit which will not be reflected in the total of the Loyalty due
to the truncation, but it will be reflected in the point balance of the user because the user’s balance2
is already above 1e7: points.balance2 / POINT_DENOMINATOR * BURN_BOOST / DEFAULT_BOOST;

Because the total points are less than needed, the tokenReward.index will be larger which will inflate
the rewards to be dispersed: tokenReward.index += ((amount * REWARDS_MULTIPLIER) /
loyalty.getTotalPoints()).toUint128();

Users will not be able to claim their rewards as more reward tokens are attempted to be sent than
actually exist in the contract. This can be repeatedly done by malicious users to widen the spread
between the total points and sum of all users’ points.

Recommendation

In function burnTokens, remove the user’s prior points from the total and add their new points with
the boost similar to function updateBoost

Similarly adjust functions withdraw and claimPoints to avoid the discrepancy as well.

Resolution

Ambit Team: The issue was resolved in commits a414931 and d4b3fa3.
20

Category Severity Location Status

Logical Error ● Critical Loyalty.sol: 159 Resolved

PoC

LDTR-1 | Small Positions Backed By The Vault Token Cause Liquidations To Revert

Description

In the liquidateVaultToken function it is assumed that the totalAmount is always available for
withdrawal from the vault since in many cases it would have been previously repaid to the vault in
the MarketLiquidation.settleLiquidation function.

However in the case where all funds are actively being borrowed from the vault and a small account
is liquidated while the totalAmount is greater than the liabilities, there is not enough USDT to redeem
from the vault and the liquidation will revert on line 397 in the DepositorVault.withdrawInternal
function.

Recommendation

Ensure the totalAmount is capped at the liabilities earlier on in the liquidation logic, this way there is
always guaranteed to be enough USDT to redeem from the vault in the event that the user’s collateral
is the vault token.

Additionally, do not allow withdrawals from the DepositorVault to go below the available balance
returned by getAvailableBalance. This way it is nontrivial to enter a scenario where there is no USDT
left in the vault.

Resolution

Ambit Team: The issue was resolved in commit a9d6785.

21

Category Severity Location Status

Logical Error ● High Liquidator.sol: 98 Resolved

GLOBAL-1 | Snapshot System Prone To Instant Balance Change

Description

The snapshot system was implemented in Ambit V2 to prevent the manipulation of the utilization
rate through instantaneous balance changes in the Depositor Vault. However, the system only
examines the latest snapshot, which can be trivially updated because the function takeSnapshot is
public.

A user can take a snapshot right after depositing in the vault, and now the snapshot will reflect the
current balance. Consequently, a user can still instantly manipulate the utilization rate at will through
their deposits and withdrawals and take a snapshot right after.

Recommendation

Modify the visibility of function of takeSnapshot to private. Furthermore, take a snapshot upon
borrowing and repaying as the total liabilities are modified.

Consider taking a weighted average of the assets available across the past 4-10 snapshots so it is
less prone to instantaneous manipulation. Also, consider utilizing a minimum deposit and borrow
amount as well to limit a user from trivially creating many snapshots and pushing the 4-10
snapshots back.

Resolution

Ambit Team: The issue was resolved in commit 8530b71.

22

Category Severity Location Status

Protocol Manipulation ● High Global Resolved

LOTY-3 | Calling claimBoost Before Claiming Points Breaks The User's Boost

Description
The UserPoints.boost is supposed to be at 10 (equating to 1x) but is 0 initially. When claimPoints()
gets called after waiting for 2 EPOCHs the UserPoints.boost is set in the following snippet:
 user.boost = user.boostOrDefault(); // @audit gets set from 0 to 10 here

The user can make their boost larger by calling claimBoost() if one is available to them. The current
implementation of the system has a FirstLoanBoostModule which gives users an additional 0.1x on
top of their 1x boost. The requirement for it is that they have borrowed more than 0 from the protocol
and that they have a positive point balance through UserPoints.total().

The issue arises if the user burns AMBT with burnTokens() before calling claimPoints() to set their
initial UserPoints.boost to 10 and then calls claimBoost(). This would set their boost to 0.1x instead
of to 1x due to the following LoC:
user.boost = Math.min(user.boost + boost, LoyaltyLib.MAX_BOOST).toUint64();

Here UserPoints.boost is not yet set to the default boost, hence the user's boost for their balance1
becomes 10x smaller than it should be and causes them to lose out on 90% of the rewards they
should be receiving.

Recommendation
Consider implementing the following changes across the Loyalty.sol file:

1. Check whether the UserPoints.balance1 specifically is > 0 for boost eligibility.

2. Set the UserPoints.boost to UserPoints.boostOrDefault() in burnTokens() and supply().

Resolution
Ambit Team: The issue was resolved in commit 8c37f44.

23

Category Severity Location Status

Logical Error ● High Loyalty.sol Resolved

PoC

ML-1 | Health Score Decreases After Liquidation

Description

Because each token has a different LTV, a liquidation in a specific token produces a change in
borrowing power that is not proportionate to the change in liabilities. As a result, it is easily possible
for a position to have a lower health score (become unhealthier) post-liquidation.

The position would require more than 1 liquidation at 50% of the liabilities until the health score
increased. Consequently, bad debt can stay in the system for a prolonged period and put the
protocol at risk of supporting an insolvent position.

- 1000 USDT in liabilities
- 6 ETH each at $100 for 100% LTV ($600 borrowing power)
- 1 BTC each at $400 for 50% LTV ($200 borrowing power)
- Health Factor: ($600 + ($400 * 0.5)) / $1000 = 0.80

Because ETH is the largest position in the portfolio, the ETH will be liquidated.

- 50% of 1000 USDT (liabilities) = 500 USDT
- Proportionate supply = 500 USDT / $100 (ETH price) = 5 ETH
- 500 USDT in liabilities
- 1 ETH in the portfolio ($100 borrowing power)
- 1 BTC in the portfolio ($200 borrowing power)
- New Health Factor: ($100 + ($400 * 0.5)) / $500 = $300 / $500 = 0.60

Recommendation

Prior to liquidating a position, simulate the health factor post-liquidation. Carefully select the asset to
liquidate which will ultimately increase the health factor. Furthermore, consider supporting full
liability liquidations.

Although this may add complexity as multiple swaps in the portfolio may be needed due to the
different supply tokens, it will ensure the borrow position is healthier post-liquidation.

Resolution

Ambit Team: The issue was resolved in commit 2b4c71d. 24

Category Severity Location Status

Logical Error ● High MarketLiquidation.sol Resolved

PoC

GLOBAL-2 | USDT Treated as One Dollar

Description

During the liquidation of a position involving a different ERC-20 token, a swap occurs. In this swap,
the minAmountOut is calculated to ensure a minimum amount of tokens is received. However, the
estimateSellAmount function calculates the minAmountOut based on the notional value, by
multiplying the amount (amount1) by the price (amount2):

uint256 minAmountOut = amount1.mulDiv(amount2, 10 ** decimals);

Changes in the asset's price can lead to minAmountOut being either larger or smaller than the input
amount. If the price rises, the minAmountOut may exceed the input, causing the swap and
liquidation attempts to fail. Conversely, if the price falls, minAmountOut may be much lower than
intended, enabling swaps to exceed the intended max slippage.

Other areas where USDT is assumed to be $1 is the liabilities. Because the liabilities are used in
calculations such as an account’s health factor, an account may appear unhealthy when it is not and
vice versa.

Recommendation

Modify the calculation for minAmountOut in the estimateSellAmount function to be based on the
expected token amount rather than the notional value. This adjustment ensures more accurate and
reliable swaps during liquidation. Furthermore, use a USDT price feed to retrieve the market price.

Resolution

Ambit Team: Because we are a lending protocol that only lends out a single asset, the liabilties and
borrow limit are denominated in that base asset, in this case USDT. Additionally, all price oracles are
based on USD.

25

Category Severity Location Status

Logical Error ● High Global Acknowledged

ML-2 | findLargestPosition Uses Ordinary Price Instead Of Discounted

Description

findLargestPosition finds the largest position in a user's portfolio and returns it to be liquidated. The
issue arises due to it using the ordinary prices from the oracle instead of the ones with applied
discounts when calculating position size.

This will cause some positions, which are normally of higher value but have a higher discount to still
be selected over ones with a lower value and a lower discount that equates to them being worth
more when liquidating: (, USD[] memory totals) = portfolio.getPortfolioValue(portfolioAssets);

Recommendation

Consider using the discounted prices to find the position that will liquidate the most amount of
assets.

Resolution

Ambit Team: We have discussed this in the past, however, using the position that has the largest
USD value (ignoring the discount) is preferrable as it allows for the greater portion of liabilities to be
repaid.

26

Category Severity Location Status

Logical Error ● Medium MarketLiquidation.sol: 284 Acknowledged

TRH-1 | Stored Custodian Becomes Invalid Upon Migration

Description

The Custodian is kept as a separate, immutable variable inside of the TokenRewardHooks instead of
_asset.custodian being used. Upon Custodian migration through the CustodianMigrator, the address
of the Custodian will change and TokenRewardHooks will continue to reference the old Custodian.
This necessitates a TokenRewardHooks re-deploy as _custodian cannot be reset.

Recommendation

Consider using the Custodian directly on the _asset instead of setting _custodian.

Resolution

Ambit Team: The issue was resolved in commit 310287d.

27

Category Severity Location Status

Migration ● Medium TokenRewardHooks.sol: 60 Resolved

TRH-2 | The Balance Of Any Disabled Token Can Get Hijacked

Description

Any asset, that gets disabled will have it's balance hijacked due to a lack of access control on
claim(). Function claim() calls accrue(_tokenRewards[token]), which is a private function only also
called in accrue(). This function updates the current index of each epoch on the token based on the
totalSupply of custodian shares at the moment.

Due to the asset not being in the _rewardTokens anymore, it does not get its index updated upon a
user change.Consequently claim() is prone to a Portfolio share inflation attack that steals the whole
balance of the said reward token.

This can be achieved by depositing a large amount of the asset, calling claim(), which updates the
accrued for that token based on the now inflated balance of shares and then transfers an inflated
portion to the user.

Recommendation

Put only active token access control on claim().

Resolution

Ambit Team: The issue was resolved in commit 115e128.

28

Category Severity Location Status

Access Control ● Medium TokenRewardHooks.sol Resolved

ML-3 | User Loses More Collateral Than Necessary

Description

During a liquidation, the total amount to be liquidated and the amount of supply to withdraw from the
user’s portfolio to the Liquidator is calculated in function calculateLiquidation()

With those parameters the liquidation is settled in function settleLiquidation(), where the total
amount being repaid is adjusted to be no more than the user’s liabilities:
uint256 repayAmount = Math.min(context.totalAmount, context.liabilities);

Consequently, the amount to repay can be dramatically decreased yet the amount withdrawn from
the user's supply is still the originally calculated supply. Although the the excess of the user’s
liabilities is refunded, the supply was valued at the discounted price so the user has more supply
withdrawn from their portfolio than necessary.

This results in an extra “liquidation fee” causing loss of funds for users.

Recommendation

Consider adjusting context.position by the discounted price to accurately reflect the amount being
repaid. Otherwise, clearly document this behavior to users.

Resolution

Ambit Team: Yes this is correct, however, it will only occurr for accounts that have liabilities less than
the smallAccountThreshold (which would probably be set to somewhere between 250-500).

29

Category Severity Location Status

Logical Error ● Medium MarketLiquidation.sol: 203 Acknowledged

ML-4 | findLargestPosition Exposes Liquidator to Unnecessary Slippage

Description

In the liquidate function, a liquidator is forced to liquidate from the asset with the largest notional
value. This approach can result in less profit for the liquidator, especially when the position with the
highest notional value involves a less liquid pool, this is because smaller pools experience more
slippage during swaps.

This limitation makes positions with certain assets as their largest holding less attractive to liquidate
due to reduced profits, increasing the likelihood of incurring bad debt.

Recommendation

Allow liquidators to choose which asset they want to liquidate.

Resolution

Ambit Team: The MarketLiquidation contract does expose a second liquidate method that allows the
liquidator to determine which asset they want to liquidate as opposed to the asset with the largest
notional value. However, the initial implementation of the Liquidator is relying on the method that
utilizes the findLargestPosition in order to favor paying off more debt in this scenario.

30

Category Severity Location Status

Logical Error ● Medium MarketLiquidation.sol: 135 Acknowledged

MKT-1 | User Can Avoid Accrued Interest

Description

The Ambit protocol supports the usage of a DiscountModel to decrease the interest accrued on a
user’s borrow position. Once the DiscountModel is set, the interest is calculated with the function
calculateDiscountedLiabilities instead of the typical interest calculation.

With the model a user can receive a discount for their entire borrow amount:
Math.min(userLiability.borrowed, points * AMOUNT_PER_POINT).toUint128();

A user may be in the market for a prolonged period of time while there is no discount campaign and
the marketState.borrowIndex will largely increase during that elapsed time. In order to avoid paying
that interest, a user can wait to accrueLiabilities until a discount model is set.

A user can burn Ambit to immediately increase their points such that the discount matches the
borrow position, although this may require a large amount of Ambit. Afterwards the user will call
function accrueLiabilities where the resultant interest will be zero, and the user will avoid the interest
that they would have had to pay otherwise.

Recommendation

Be extremely cautious with the discounts in the DiscountModel to prevent users from creating
interest-free borrow positions. Furthermore, accrue liabilities for the user prior to burning Ambit.

Resolution

Ambit Team: The issue was resolved in commit 02bedd8.

31

Category Severity Location Status

Protocol Manipulation ● Medium Market.sol: 396 Resolved

PoC

MKT-2 | MarketState Not Updated Prior To Calling Pause/Unpause

Description

When a market is paused, interest no longer accrues for positions in the calculateMarketState
function as the function ceases execution early if paused() is true. However, when a market is
paused with the pause function, the pending interest is not accrued.

Therefore, when a market is paused, the interest accrued since the last accrueLiabilities call is
effectively lost, as subsequent calls to accrueLiabilities update the marketState.lastUpdate
timestamp without accruing interest.

Additionally, when a market is unpaused, the protocol does not ensure that accrueLiabilities is called
prior to unpausing the market. This would result in the interest accrued since the last
accrueLiabilities call needing to be paid, since we no longer enter the paused() is true

Recommendation

Call the accrueLiabilities function prior to calling pause/unpause on the market

Resolution

Ambit Team: The issue was resolved in commit 48aeb70.

32

Category Severity Location Status

Logical Error ● Medium Market.sol: 348 Resolved

LDTR-2 | Possible Lack Of Incentive For Liquidations

Description

The treasuryFee is taken at a higher priority than the caller fee for liquidations. In the event where
there is only enough profit to fully pay out the treasury fee, the treasury fee is paid and the callerFee
is reduced. Therefore the incentive for a liquidator to expeditiously liquidate an account may be
reduced and possibly insufficient in some cases.

Recommendation

Consider taking the callerFee as the highest priority so that there is always sufficient incentive for
liquidations to occur in the system.

Resolution

Ambit Team: The issue was resolved in commit ce65380.

33

Category Severity Location Status

Incentives ● Medium Liquidator.sol: 173 Resolved

MKT-3 | discountModel Updated Before Liabilities Accrue

Description

In the setInterestRateModel function, the pending interest is updated with the accrueLiabilities
function to correctly account for the outstanding interest having accrued under the previous interest
rate model.

However in the setDiscountModel function the new _discountModel is set before the interest is
updated with the accrueLiabilities function, therefore any pending interest is treated as if it had
accrued with the new discount model configured while this is not the case.

Recommendation

Update the pending interest values with the accrueLiabilities function before updating the
_discountModel in the setDiscountModel function.

Resolution

Ambit Team: The issue was resolved in commit 1a1d62c.

34

Category Severity Location Status

Logical Error ● Medium Market.sol: 109 Resolved

TRH-3 | Token Rewards DoS

Description

Since the token reward epochs are being pushed into the array on every donation and never removed,
there is a risk of DoS because users who supply for the first time will need to go through the entire
list of expired epochs for each of the reward tokens present.

This will cost users who are supplying to their portfolio for the first time to pay an excessive amount
of gas overhead, which may potentially exceed the block gas limit and prevent the user from
supplying.

Recommendation

Consider not going through all past epochs when accruing for a new user and just setting the epoch
index to the current one.

Resolution

Ambit Team: The issue was resolved in commit 9b48119.

35

Category Severity Location Status

DoS ● Medium TokenRewardHooks.sol Resolved

TRH-4 | Rewards During A Pause For A Reward Token Can Be Accrued

Description

Paused tokens are not differentiated from when calling accrue() on them. This allows a user to
accrue them even though they should not be by calling claim(). This then allows users to claim yield
for a token that is currently on pause.

Furthermore, tokens paused through disableRewardToken() do not get accrued when calling
accrue(). This would effectively lose users yield.

Recommendation

Consider having a check for if a token is paused or not in accrue(TokenReward storage
tokenReward) and returning early if it is.

Also consider accruing paused tokens up until the pause point in order for all users to be able to
claim them.

Resolution

Ambit Team: The issue was resolved in commit c4b376a.

36

Category Severity Location Status

Logical Error ● Medium TokenRewardHooks.sol Resolved

TRH-5 | Invalid Result Returned From getClaimableRewards

Description

Each reward epoch restarts the accumulationIndex from 0. However in the getClaimableRewards
function, the userReward.accumulationIndex is never reset when iterating through the list of epochs.
Therefore the resulting claimable reward amount received from the getClaimableRewards function
will be inaccurate.

Recommendation

Reset the userReward.accumulationIndex to zero upon iterating to a new epoch.

Resolution

Ambit Team: The issue was resolved in commit 746b070.

37

Category Severity Location Status

Logical Error ● Medium TokenRewardHooks.sol: 328 Resolved

SNAP-2 | Untruncated Timestamps Are Unmatchable

Description

In both the find and search functions, the method for validating whether a snapshot has been found
or not is to check whether the supplied timestamp is exactly equal to the snapshot timestamp.
However, this will rarely be the case as the provided timestamp is not truncated to satisfy the
5-minute intervals that the snapshot timestamps are stored with.

Recommendation

Truncate the provided timestamp so that it will be much more likely to line up with the snapshot
timestamps.

Resolution

Ambit Team: The issue was resolved in commit 1b4c59a.

38

Category Severity Location Status

Logical Error ● Medium SnapshotLib.sol: 70, 89 Resolved

YBC-1 | Invalid totalAssets Validation

Description

The getTotalSupply function returns the totalAssets balance rather than the supply of the vault
token.

However in the BaseCustodian.withdraw function, the shares amount is compared with the result of
the getTotalSupply function. Therefore a shares amount is validated being against an underlying
token amount.

Recommendation

In the check in the BaseCustodian on line 79 compare the amount which is a token amount against
the result of the getTotalSupply function.

Otherwise change the definition of the getTotalSupply function, but be careful to update where it is
used, as the validation using the getTotalSupply function in the Portfolio contract is currently correct
as it assumes the getTotalSupply is an underlying token amount.

Resolution

Ambit Team: The issue was resolved in commit 989c186.

39

Category Severity Location Status

Logical Error ● Medium YieldBearingCustodian.sol: 36 Resolved

MKTV-1 | Deleveraging Does Not Consider The Flash Fee

Description

The flash fee is not considered when approving the flash lender to pay back the flash loan, therefore
the MarketplaceVendor cannot be used to deleverage positions unless the MarketplaceVendor is a
flash fee whitelisted address.

The MarketplacePurchaser on the other hand does account for the flash fee.

Recommendation

Consider implementing flash fee support in the MarketplaceVendor. If the MarketplaceVendor
contract is intended to always be a flash fee whitelisted address then be careful to always whitelist
it.

Resolution

Ambit Team: This is fine as the MarketplaceVendor is whitelisted and excluded from fees.

40

Category Severity Location Status

Configuration ● Medium MarketplaceVendor.sol: 191 Acknowledged

LDTR-3 | Liquidations Prevented By Slippage

Description

Because some liquidations require a swap, they could be prevented if a malicious actor front-runs
the transaction and moves the pool price out of the acceptable range. The malicious actor could
sandwich the transaction to undo this price manipulation so that minimal capital is lost.

Consequently, the liquidations will be prevented by an insufficient output amount revert, leaving bad
debt in the protocol.

Recommendation

Use an aggregator and/or ensure the discount is large enough to meet slippage requirements.
Furthermore, consider allowing unprofitable liquidations to occur, marking the forceful liquidation
with a boolean flag if necessary.

Resolution

Ambit Team: This should be fine as the Liquidator is the on-chain backup liquidation function. We
have an off-chain liquidator that will be the primary source of liquidations and that uses 1inch to sell
assets where applicable.

41

Category Severity Location Status

Protocol Manipulation ● Medium Liquidator.sol: 77 Acknowledged

LOTY-4 | User Points Not Getting Claimed In accruePoints Loses Them Rewards

Description

Since accrued points are practically points that don't get rewards accrued on them users who call
accruePoints() but then do not directly claim in the same will lose out on rewards from those points.

Recommendation

Consider calling claimRewards() for users in accruePoints() .

Resolution

Ambit Team: Users will only be subjected to claiming points which will internally accrue.
getClaimablePoints() method will return the up-to-date points without a call to accruePoints().

42

Category Severity Location Status

Logical Error ● Low Loyalty.sol Acknowledged

MKT-4 | Discounts Do Not Apply Without An Update To Liabilities

Description

Liability interest discounts do not apply to a user's position if they do not explicitly update their
liabilities in the discount period even if they have had that position since before the discount period.

For example, if the protocol goes from a standard interest rate to a discount rate and finally back to a
normal rate, the user will not experience the discounted rate at all if the function
calculateUserLiability is not called during the discount period.

Recommendation

Clearly document to users that not updating their liabilities during the discount period will not apply
the said discounts.

Resolution

Ambit Team: The drawbacks are understood here, but unlikely to cause an issue as the primary
purpose of the discount model is to allow points holders to have discounted rates.

43

Category Severity Location Status

Logical Error ● Low Market.sol: 389 Acknowledged

PTFLO-1 | User Can Withdraw And Supply In The Same Block

Description

Users are not supposed to be able to complete a withdrawal and supply in the same block. It is
prevented with the use of the ensureWithdrawAvailability() function.

The issue arises due to the _lastUpdateBlocks mapping of a user for a particular token being deleted
upon their whole balance being taken out. This allows a user to first withdraw and then supply the
same token within the same block.

Recommendation

Do not delete the _lastUpdateBlocks mapping even if the user withdraws their whole balance.

Resolution

Ambit Team: The check was only supposed to stop a supply followed by a withdraw in the same
block, a withdraw followed by a supply should be fine.

44

Category Severity Location Status

Logical Error ● Low Portfolio.sol Acknowledged

ML-5 | User's Discount Not Considered On Liquidation

Description

When liquidating an account, market.getLiabilities(account) is called to calculate the user's liabilities.
However, the user can have their liabilities reduced if their accrued loyalty points were to be claimed
and consequently have a healthy position.

As a result, a user is liquidated when they could have a healthy position just by claiming their points,
leading to loss of funds for the liquidated account.

Recommendation

Claim the account's points on the call to function accrueLiabilities.

Resolution

Ambit Team: We want to encourage the users to interact with the protocol and keeping the manual
claiming of points is a way to do that.

45

Category Severity Location Status

Logical Error ● Low MarketLiquidation.sol Acknowledged

MKT-5 | Discounts Favor Borrowers With A Higher Liabilities/Principal Ratio

Description

The discount percentage gets calculated as a fraction of the principle of the borrower's loan and
then that percentage gets taken out of the total liabilities of the loan. The issue here is that this
model heavily favors users who have a high liabilities/principal ratio.

This is against the interest of the protocol since those types of users likely haven't yet repaid large
amounts of interest or have borrowed riskier assets.

Recommendation

Consider calculating the percentage with the total liabilities instead in order to favor users with lower
accrued interest.

Resolution

Ambit Team: The issue was resolved in commit 1406fa3.

46

Category Severity Location Status

Logical Error ● Low Market.sol Resolved

UNIPO-1 | Uniswap Oracle Manipulation

Description

One of the price oracles Ambit utilizes is the ratio of the reserves in a Uniswap pool. However, these
reserves are highly susceptible to manipulation, as an attacker can manipulate the reserves of one of
the tokens with a flashloan and exaggerate the price.

Due to the inflated worth of their collateral, an attacker's borrowing limit is increased and they are
able to borrow more funds from the protocol than originally intended. This can drain the lending
market and leave the protocol holding less value than stolen once the price of the collateral is
restored.

Recommendation

Use the Uniswap TWAP for the price instead of the reserves calculation.

Resolution

Ambit Team: The issue was resolved in commit c58344b.

47

Category Severity Location Status

Oracle Manipulation ● Low UniswapV2PriceOracle.sol: 31-33 Resolved

LDTR- 4 | MIN_SLIPPAGE_ALLOWED is never used

Description

In the liquidator contract the constant MIN_SLIPPAGE_ALLOWED is set to 0.5%. However, the
constant is never used and no minimum slippage is enforced.

Recommendation

If the MIN_SLIPPAGE_ALLOWED is not intended to be used remove it.

Resolution

Ambit Team: The issue was resolved in commit baa9a01.

48

Category Severity Location Status

Superfluous Code ● Low Liquidator.sol: 32 Resolved

PTFLO-2 | Portfolio Hooks Prone To Reentrancy

Description

The Portfolio provides the capability to perform a particular action before supplying/withdrawing and
after supplying/withdrawing through the use of hooks on a particular asset. Because state changes
occur between the before hook and after hook, if a hook were to expose an external call outside of
the protocol's system, a user could reenter.

One potential issue that could arise is if a user could use the before hook to re-enter into function
supply and circumvent the maximum supply validation because the Custodian's supply has yet to be
updated.

Recommendation

Be extremely careful with the hooks that are supported on each asset, so that calls outside of Ambit
are restricted. Furthermore, consider adding nonReentrant guards.

Resolution

Ambit Team: This is accepted, however, hooks are still only an internal component used by the dev
team when extending the protocol and this can be controlled.

49

Category Severity Location Status

Reentrancy ● Low Portfolio.sol Acknowledged

DIRM-1 | Current Market Liabilities Used For Utilization

Description

The market’s utilization ratio is calculated using the instantaneous liabilities instead of using the
liabilities stored in the snapshots: uint256 liabilities = depositorVault.getLiabilities(marketAddress);

Furthermore, the Snapshot.totalLiabilities is not used at all. Ultimately this may lead to some gaming
of the utilization ratio, and the liabilities can be directly affected with a borrow and repay.

Recommendation

Ensure the fees for borrowing are large enough to deter utilization ratio manipulation. Furthermore,
consider using the average of the snapshot liabilities in the utilization calculation.

Resolution

Ambit Team: This has now been changed to use an average of the totalAssets. Additionally, the push
the utilization higher, the user would have to borrow and in which case fees would be applied, and
they would also have to have the assets supplied to their portfolio.

To push the utilization lower (and this decrease the rate) they would have to continually repay a loan
and then borrow again and in which case the fees should provide an economic disincentive.

50

Category Severity Location Status

Logical Error ● Low DynamicInterestRateModel.sol: 78 Acknowledged

LDTR-5 | Liquidations Halted

Description

In times of volatility it may be possible for liquidations to drain the Liquidator contract of the
liquidation fund. In most cases the liquidator should receive back the USDT that was used to initiate
the liquidation, however in some cases when liquidating vault tokens it may be possible for the
amount of USDT in the Liquidator contract to decrease.

Once the liquidator is drained no liquidations can occur and the protocol will accrue bad debt.
Additionally, particularly large liquidations may eclipse the size of the current liquidation fund, in
which case these liquidations would only partially occur and require several liquidations to finalize.

The risk is that the price of the collateral decreases further, increasing the chances of an insolvent
position.

Recommendation

Be aware of this risk and ensure that the liquidation fund is always large enough to cover any
liquidations.

Resolution

Ambit Team: The Liquidator is just the on-chain backup, there will be an off-chain liquidator running
also that will handle this.

51

Category Severity Location Status

Warning ● Low Liquidator.sol Acknowledged

MKT-6 | Users Are Charged Interest On Fee Amounts

Description

When user's are charged fees, the fee amount is added to their principle and they simply do not
receive that fee amount in USDT, instead it goes to the treasury.

Since the fee amount is still added to the user's principle however, the user still must pay interest on
this fee amount that is taken. This may be unexpected for users and can cause confusion on the real
amount of interest being charged.

Recommendation

Consider if this is the expected behavior, and be sure to document it for users.

Resolution

Ambit Team: Yes this is expected behavior.

52

Category Severity Location Status

Unexpected Behavior ● Low Market.sol: 215 Acknowledged

LOTY-5 | Superfluous Pending Rewards Calculation

Description

The pending rewards for an account are added to the userReward.accrued at the end of the
getClaimableRewards function. However this is unnecessary as the pending rewards are already
updated in the accrueRewards function call on line 258.

Recommendation

Remove the pending rewards calculation from the return statement in the getClaimableRewards
function.

Resolution

Ambit Team: The issue was resolved in commit 1c1580d.

53

Category Severity Location Status

Superfluous Code ● Low Loyalty.sol: 260 Resolved

GLOBAL-3 | Interest Fee Design

Description

Depositors only receive their rewards when borrowers choose to pay back their debt, however given
that this is perpetual debt it is possible that depositors do not accrue their rightful interest until much
later.

You lent funds in the vault in block 100, in block 101 User A borrows funds from the vault, in block
200 you withdraw funds from the vault, in block 210 User A finally repays their borrowed amount and
pays out their interest to the vault.

However now you are not able to collect this interest given the time duration mismatch between the
borrower leveraging the funds in the vault and actually paying back the accrued interest.

In other systems such as Abracadabra Money, the accrued interest is credited as it is generated and
the system does not wait for users to repay their debt to provide yield.

Recommendation

Consider the drawbacks of rewarding depositors when a borrower repays their debt. In a future
iteration it may be useful to consider a different method for distributing fees so that lenders are fairly
compensated.

Resolution

Ambit Team: The issue was resolved in commit 1c1580d.

54

Category Severity Location Status

Protocol Design ● Low Global Resolved

MKT-7 | Typo

Description

The word “accrued” is misspelled as “accurred” on line 258.

Recommendation

Correct it to “accrued”.

Resolution

Ambit Team: The issue was resolved in commit 929534e.

55

Category Severity Location Status

Typo ● Low Market.sol: 258 Resolved

TRH-6 | Donations Lost When totalShares Is 0

Description

When the totalShares is 0, the accumulate function returns a 0 amount to be distributed, therefore
donations will not be distributed when there is 0 shares for the _asset.

Recommendation

The TokenRewardHooks contract is Sweepable, so these funds may be rescued by the treasury, but
consider if this is the expected behavior. If not, consider implementing a method for donators to
reclaim undistributed rewards. Or for an additional incentive for suppliers to acquire shares when the
supply is 0.

Resolution

Ambit Team: Yes this is fine, it’s unlikely that donations will be occuring without any assets being
supplied.

56

Category Severity Location Status

Lost Rewards ● Low TokenRewardHooks.sol: 183 Acknowledged

ML-6 | Blacklisted Accounts May Avoid Liquidation

Description

Accounts that are blacklisted for USDT cannot be liquidated when the refundAmount is nonzero as
the settleLiquidation function would attempt to transfer USDT to the blacklisted account.
On BSC there is no blacklist functionality for USDT, however on other chains USDT does have a
blacklist feature, so care should be taken when deploying to new chains.

Recommendation

Carefully consider new chain deployments as certain features may be incompatible or exploitable on
new chains.

Resolution

Ambit Team: When we do deploy to these chains we will look at the option to actually just keep the
funds in the treasury if the account is blacklisted.

57

Category Severity Location Status

Blacklist ● Low MarketLiquidation.sol: 224 Acknowledged

VEST-1 | Typo

Description

There is a typo in the variable ellapsed as it should be named elapsed.

Recommendation

Rename the ellapsed variable to elapsed.

Resolution

Ambit Team: The issue was resolved in commit 929534e.

58

Category Severity Location Status

Typo ● Low TokenVesting.sol: 21 Resolved

DVLT-1 | No Basis Point Validation For setBorrowLimit

Description

In the setBorrowLimit function, there is no safety check that the provided amount is within the max
for a basis point value if absoluteOrRelative is AbsoluteOrRelative.RELATIVE.

Recommendation

Consider adding a safety check that the amount is within the expected range for basis point values if
the absoluteOrRelative value is AbsoluteOrRelative.RELATIVE.

Resolution

Ambit Team: The issue was resolved in commit 382b0ad.

59

Category Severity Location Status

Validation ● Low DepositorVault.sol: 248 Resolved

TRH-7 | Redundant Accruals

Description

In the afterSupply and afterWithdraw functions the accrue method is invoked. However the accrue
method will have already been called previously as a part of the beforeSupply and beforeWithdraw
functions.

Recommendation

Remove the redundant calls to accrue in the afterSupply and afterWithdraw hooks.

Resolution

Ambit Team: The issue was resolved in commit 60a421b.

60

Category Severity Location Status

Optimization ● Low TokenRewardHooks.sol: 101, 113 Resolved

TRH-8 | Superfluous tokenReward.index Update

Description

In the enableRewardsToken function the tokenReward.index is assigned to 0 if the
tokenReward.index is 0 and otherwise it is assigned to the tokenReward.index.
This is pointless and therefore the line can be removed.

Recommendation

Remove the superfluous tokenReward.index assignment on line 136.

Resolution

Ambit Team: This was removed with the update to token rewards referenced in a few other issues.

61

Category Severity Location Status

Superfluous Code ● Low TokenRewardHooks.sol: 136 Resolved

YBC-2 | Lacking Migration Logic

Description

There is no migration logic for the yield bearing custodian.

Recommendation

Consider if this is the expected behavior, implement migration logic if it should be migratable.

Resolution

Ambit Team: The issue was resolved in commit eeadec7.

62

Category Severity Location Status

Configuration ● Low YieldBearingCustodian.sol Resolved

YBC-3 | Lack Of Donation Fee In The YieldBearingCustodian

Description

There is no implementation for the previewDonationFee, therefore there will be no donation fee or
fee receiver.

Recommendation

Be sure this is the desired behavior for the YieldBearingCustodian donations.

Resolution

Ambit Team: Yes this is fine, only the DepositorVault has a donation fee.

63

Category Severity Location Status

Protocol Fees ● Low YieldBearingCustodian.sol Acknowledged

DVM-1 | Depositor Vault Key Re-computed

Description

When the depositorVault is assigned in the registry the depositor vault key is recomputed by hashing
the “ambit.depositorVault” string. However it would be a better practice to access and use the
already computed keys from the AddressRegistryExtensions file. This way potential typos can be
avoided when they would cause critical issues.

Recommendation

Rather than manually hashing the key for the depositor vault, use the pre-computed
AMBIT_DEPOSITOR_VAULT key from the AddressRegistryExtensions contract.

Resolution

Ambit Team: The issue was resolved in commit b8239f5.

64

Category Severity Location Status

Best Practices ● Low DepositorVaultMigrator.sol: 79 Resolved

DVM-2 | Redundant Inheritance

Description

The DepositorVaultMigrator contract inherits from both the AdminAccessControl and
AuthorizedAccessControl contracts.

However the AuthorizedAccessControl also inherits from the AdminAccessControl contract.
Therefore it is unnecessary for the DepositorVaultMigrator contract to directly inherit from the
AdminAccessControl contract.

Recommendation

Remove the direct inheritance from the AdminAccessControl in the DepositorVaultMigrator contract.

Resolution

Ambit Team: The issue was resolved in commit 77197c8.

65

Category Severity Location Status

Superfluous Code ● Low DepositorVaultMigrator.sol: 22 Resolved

YVLT-1 | Invalid 0 Price Returned From getExchangeRate

Description

The getExchangeRate ought to return an exchange rate of _scalar in the case where the totalShares
is 0 as this will be the exchange rate for any deposit when the totalShares are 0.

Recommendation

Consider updating the getExchangeRate implementation such that it returns _scalar when the
totalShares is 0.

Resolution

Ambit Team: The issue was resolved in commit 6d498c3.

66

Category Severity Location Status

Unexpected Behavior ● Low YieldVault.sol: 39 Resolved

SNAP-3 | Unnecessary Truncate Call

Description

There is no need to truncate the snapshot.timestamp a second time as the timestamp has already
been truncated on line 38.

Recommendation

Remove the truncate function call on line 41.

Resolution

Ambit Team: The issue was resolved in commit 6d498c3.

67

Category Severity Location Status

Optimization ● Low SnapshotLib.sol: 41 Resolved

ML- 7 | Users can be Liquidated for More than Needed

Description

Trusted liquidators have the capability to liquidate an arbitrary amount and from any asset in a user's
portfolio. This flexibility allows a liquidator to intentionally liquidate specific assets and amounts in a
strategic order to maximize their profit.

If a liquidator performs two liquidations— the first being as much as possible while keeping the
position unhealthy, and the second being the full 50% of the user's largest position—they can
liquidate more than if they had only done the 50% liquidation in the first attempt.

Recommendation

It is recommended to clearly document that there is no hard cap for how much a user can be
liquidated.

Resolution

Ambit Team: Liquidation will be restricted to trusted actors so this shouldn't present a problem
initially. If its decided to open this up then we will revisit.

68

Category Severity Location Status

Documentation ● Low MarketLiquidation.sol: 141 Acknowledged

SNAP-4 | Unexpected Found Value Returned

Description

In the find function on line 73, in the event that the queried timestamp is in the middle of the latest
and oldest timestamps, the find function always returns true for the found result.

However a snapshot match might not have been found in the search function, and instead the first
snapshot that is larger will be returned. This may not fit the consumer’s idea of the found boolean
from the find function.

Recommendation

Consider if the search function should determine whether a snapshot was found or not depending
on if the match case was hit.

Resolution

Ambit Team: The found parameter is supposed to represent that the requested timestamp was prior
to any data that currently exists in the history and therefore the value could not be found, however, it
returns the first available value in this case (which should be after the timestamp requested).

69

Category Severity Location Status

Unexpected Behavior ● Low SnapshotLib.sol: 73 Acknowledged

DMOD-1 | Points Discount Extremely Low

Description

- 1e8 AMBT = 10 PTS
- 1 PTS = 1e10 Wei Discount Amount (assuming 18 decimal precision of underlying vault token)
- 1e8 AMBT = 1e11 Wei Discount Amount
- USDT = 1e18 Wei
- 1e15 AMBT = 10,000,000 AMBT = 1e18 Wei Discount Amount
- To obtain 1 USDT discount a user may require 10,000,000 AMBT which is 10% of its supply.

Recommendation

Document to users this behavior and/or increase the discount.

Resolution

Ambit Team: This issue was resolved in commit 9fb99ed

70

Category Severity Location Status

Logical Error ● Low DiscountModel.sol: 41 Resolved

MKTP-1 | Late Validation

Description

In the buy function, the amount is first validated to be less than the maxAmount and the adjusted
maxAmount that is subsequently used to flash loan is the minimum of the amount and the
maxFlashLoan available in the FlashLender.

However when the maxFlashLoan is less than the amount the flash loan will always fail with the
validation later on in the onFlashLoan function on line 130. Therefore this case is not validated early
enough and needlessly allowed by the Math.min operation on line 98.

Recommendation

Validate that the amount is less than the maxFlashLoan directly in the buy function to avoid
unnecessary logic.

Resolution

Ambit Team: This issue was resolved in commit 5e78aa3

71

Category Severity Location Status

Validation ● Low MarketplacePurchaser.sol: 98 Resolved

DVLT-2 | safeTransferFrom Should Occur Before Updates

Description

Calls to safeTransferFrom should generally occur before any state updates in a function to avoid
yielding an invalid state where updates have occurred before the tokens have been received.

Recommendation

Move uses of safeTransferFrom to the beginning of the repay and deposit functions in the
DepositorVault.

Resolution

Ambit Team: This issue was resolved in commit 6652b39

72

Category Severity Location Status

Reentrancy ● Low DepositorVault.sol: 320, 359 Resolved

SMMA-1 | Invalid UniswapV2 Expiration Timestamp

Description

block.timestamp is used as an expiration timestamp for UniswapV2 swaps, practically the same as
passing no timestamp. This presents an issue as the swap will go through no matter if the
transaction stays in the mempool for a prolonged period.

Recommendation

Consider using a timestamp passed from the caller.

Resolution

Ambit Team: This issue was resolved in commit 9b9ddda

73

Category Severity Location Status

Logical Error ● Low SpotMarketMarketplaceAdapter.sol Resolved

DMOD-2 | Precision Loss Can Lead to Loss of Loyalty Points

Description

In the calculateDiscountAmount function, if the vault asset’s decimals is less than 8 decimals the
user can lose points due to precision loss when the normalize function is called:

uint256 points = loyalty.getPoints(account).normalize(8, decimals);

Recommendation

To minimize the loss of points perform multiplication before division by normalizing points *
AMOUNT_PER_POINT instead of just points.

Resolution

Ambit Team: This issue was resolved in commit a414931

74

Category Severity Location Status

Precision ● Low DiscountModel.sol: 41 Resolved

DMOD-3 | Incorrect Integer Casting

Description

The following return (rate - DISCOUNT_RATE.percentOf(rate)).toUint128(); is incorrect as percentOf()
returns uint256. Instead of only DISCOUNT_RATE.percentOf(rate) being cast, the whole expression is
cast.

Recommendation

Consider re-implementing the expression like so:

return rate - (DISCOUNT_RATE.percentOf(rate).toUint128());

Resolution

Ambit Team: This issue was resolved in commit 8df6db8

75

Category Severity Location Status

Logical Error ● Low DiscountModel.sol Resolved

LDYV-1 | Wrong Event Emission

Description

emit Donate(msg.sender, amount - feeAmount, feeAmount, feeReceiver);

The event above logs the donation amount as amount - feeAmount even though the fees also get
logged by the event.

Recommendation

Consider changing amount - feeAmount to amount.

Resolution

Ambit Team: This issue was resolved in commit 5126b26

76

Category Severity Location Status

Logical Error ● Low LinearDistributedYieldVault.sol Resolved

LDYV-2 | Vault Distributes Yield Even With No Shares Present

Description

LinearDistributedYieldVault distributes interest even if there are no shares/depositors in it. This will
allow the first share depositor to get all the leftover yield.

Recommendation

Consider not distributing yield if there are no shares in the vault.

Resolution

Ambit Team: This is fine as it should be rare that we yield without any shares as in theory if there's
nothing in the vault then there is nothing to borrow to generate yield anway. Additionally if this did
occur, it should encourage users to deposit.

77

Category Severity Location Status

Logical Error ● Low LinearDistributedYieldVault.sol Acknowledged

DVLT-3 | Vault Migration Sets The First Snapshot With The Newest Values

Description

When migrating to a new DepositorVault instance the first snapshot in the observer gets set as the
latest params instead of copying the last few snapshots.

Recommendation

Consider copying the last n snapshots into the new DepositorVault.

Resolution

Ambit Team: This is fine given;

- the frequency that we migrate the vault will be very low
- there's only a small window (10-15 mins) where the rate could be artificially forced low

78

Category Severity Location Status

Logical Error ● Low DepositorVault.sol Acknowledged

ML-8 | Very Small Positions In <8 Tokens Cannot Be Liquidated

Description

All positions are denominated in USD with 8 decimals of precision. A very small loan in a token with
less precision than the USD precision will get truncated to 0 when normalizing the decimals in
uint256 total = totals[j - 1].normalize(_registry.getDepositorVault().getDecimals());

This will then offset all following calculations in liquidateInternal() and will not allow for the position
to be liquidated, leaving the protocol with bad debt it cannot remove.

Recommendation

Consider introducing a minimum deposit amount.

Resolution

Ambit Team: This would be a 0 total as you’ve identified. However, the user wouldn't even be able to
borrow against that position in the first place as the borrow limit is also normalized to the decimal
precision of the base asset. It's a different story if the price of the asset was a lot higher and then
crashed, but that's an inherent risk with an oracle based lending protocol.

79

Category Severity Location Status

Logical Error ● Low MarketlLiquidation.sol Acknowledged

MKT-8 | Incorrect Order Of Operations

Description

uint256 elapsed = block.timestamp - marketState.lastUpdate; gets calculated before timestamp
validity gets checked.

Recommendation

Consider calculating elapsed after the check.

Resolution

Ambit Team: This issue was resolved in commit f698173

80

Category Severity Location Status

Optimization ● Low Market.sol Resolved

GLOBAL-4 | Disabling Hooks May Lead To Accounting Inaccuracies

Description

Since Loyalty and TokenRewardHooks rely on hooks to accrue points and update indexes each time
there is a change in the user's portfolio, freezing the hooks of a token will cause all logic in one of
those two systems to experience accounting issues.

Recommendation

Consider implementing contract freezing logic for the two systems to freeze all their logic in regards
to the particular token when its hooks get removed.

Resolution

Ambit Team: This issue was resolved in commit cfd4e20

81

Category Severity Location Status

Logical Error ● Low Global Resolved

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

82

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

83

