
0xWeiss 1

0xWeiss 2

Summary
Auditors: 0xWeiss (Marc Weiss), 0xKato

Peer Reviewers: Lucas Martin, Nisedo

Client: Ambit Finance

Report Delivered: 16 February, 2024

About 0xWeiss

0xWeiss is an independent security researcher. In-house auditor/security engineer in
Ambit Finance and Tapioca DAO. Security Researcher at Paladin Blockchain S-
ecurity and ASR at Spearbit DAO. Reach out on Twitter @0xWeisss .

Protocol Summary
Ambit is cutting-edge, cross-chain DeFi protocol offering users simple yields on
stablecoin deposits, sustainable money market lending, and risk-defined portfolio
investment strategies - all within a user-friendly environment.

Protocol Name Ambit Finance

Language Solidity

Codebase https://github.com/ambitfi/ambitfi-contracts

Commit 1d085e88cac086b55948646316ca8c16a13ce1bd

Previous Audits

Yes, 2. Reports with commits:

https://docs.ambit.finance/audits/paladin-nov23.pdf
https://docs.ambit.finance/audits/guardian-dec23.pdf

https://twitter.com/ambitfinance
https://twitter.com/tapioca_dao
https://twitter.com/0xWeisss
https://docs.ambit.finance/audits/paladin-nov23.pdf
https://docs.ambit.finance/audits/guardian-dec23.pdf

0xWeiss 3

Audit Summary

Ambit Finance engages 0xWeiss continuously to review the security of its

codebase and consult about architectural decisions.

A 3-week time-boxed security assessment was performed.

At the end, there were 16 issues identified.

All findings have been recorded in the following report. Notice that the examined
smart contracts are not resistant to internal exploitation.

For a detailed understanding of risk severity, source code vulnerability, and potential
attack vectors, refer to the complete audit report below.

Vulnerability Summary

Severity Total Pending Acknowledg
ed

Par.
resolved

Resolved

HIGH 0 0 0 0 0

MEDIUM 7 0 4 0 3

LOW 9 0 5 0 4

INF 0 0 0 0 0

0xWeiss 4

Severity Classification

Methodology
The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.

● Assessing the codebase to ensure compliance with current best practices and
industry standards.

● Ensuring contract logic meets the specifications and intentions of the client.

● Cross-referencing contract structure and implementation against similar smart
contracts produced by industry leaders.

● Thorough line-by-line manual review of the entire codebase by industry experts.

Severity Classification

HIGH Exploitable, causing loss/manipulation of assets or data.

MEDIUM Risk of future exploits that may or may not impact the smart contract
execution.

LOW Minor code errors that may or may not impact the smart contract
execution.

INF No impact issues. Code improvement

0xWeiss 5

AUDIT SCOPE

contracts/protocol/core/AssetStorage.sol

contracts/protocol/core/AddressRegistry.sol

contracts/protocol/tokens/TokenVesting.sol

contracts/protocol/faucet/Faucet.sol

contracts/protocol/vault/SnapshotLib.sol

contracts/protocol/faucet/FaucetERC20.sol

contracts/protocol/vault/YieldVault.sol

contracts/protocol/vault/Vault.sol

contracts/protocol/vault/FlashLender.sol

contracts/protocol/market/Market.sol

contracts/protocol/market/DiscountModel.sol

contracts/protocol/market/DynamicInterestRateModel.sol

contracts/protocol/vault/DepositorVault.sol

contracts/protocol/portfolio/PortfolioStorage.sol

contracts/protocol/market/MarketLiquidation.sol

contracts/protocol/market/FixedInterestRateModel.sol

contracts/protocol/portfolio/TokenRewardHooks.sol

contracts/protocol/portfolio/BaseCustodian.sol

contracts/protocol/portfolio/YieldBearingCustodian.sol

contracts/protocol/portfolio/Portfolio.sol

contracts/protocol/portfolio/Custodian.sol

contracts/protocol/portfolio/RewardEpochLib.sol

0xWeiss 6

contracts/protocol/portfolio/CustodianMigrator.sol

contracts/protocol/market/MarketStorage.sol

contracts/protocol/market/Liquidator.sol

contracts/protocol/vault/DepositorVaultStorage.sol

contracts/protocol/vault/DepositorVaultMigrator.sol

contracts/protocol/vault/DepositorVaultToken.sol

contracts/protocol/vault/LinearDistributedYieldVault.sol

contracts/protocol/faucet/FaucetMarketplaceAdapter.sol

contracts/protocol/governance/Treasury.sol

contracts/protocol/governance/Executable.sol

contracts/protocol/governance/Governor.sol

contracts/protocol/oracle/DepositorVaultTokenPriceOracle.sol

contracts/protocol/oracle/FallbackPriceOracle.sol

contracts/protocol/oracle/ChainlinkAggregatorPriceOracle.sol

contracts/protocol/security/AuthorizedAccessControl.sol

contracts/protocol/security/AccessControlList.sol

contracts/protocol/security/AdminAccessControl.sol

contracts/protocol/lens/ProtocolLens.sol

contracts/protocol/marketplace/MarketplacePurchaser.sol

contracts/protocol/loyalty/BoostModule.sol

contracts/protocol/marketplace/SpotMarketMarketplaceAdapter.sol

contracts/protocol/marketplace/MarketplaceVendor.sol

contracts/protocol/lens/AccountLens.sol

contracts/protocol/marketplace/DepositorVaultMarketplaceAdapter.sol

0xWeiss 7

contracts/protocol/utils/Sweepable.sol

contracts/protocol/utils/Migratable.sol

contracts/protocol/loyalty/LoyaltyLib.sol

contracts/protocol/utils/Pausable.sol

contracts/protocol/loyalty/LoyaltyHooks.sol

contracts/protocol/loyalty/Loyalty.sol

contracts/protocol/loyalty/FirstLoanBoostModule.sol

contracts/protocol/loyalty/LoyaltyStorage.sol

…………………………………………………………………
…………………………………………………………………
…………………………………………………………………
……………………………….

0xWeiss 8

Findings and Resolutions

ID Category Severity Status

GLOBAL-M1 Rate manipulation MEDIUM Acknowledged

DV-M1 User Loss MEDIUM Resolved

DV-M2 Protocol malfunction MEDIUM Acknowledged

DV-M3 User Loss MEDIUM Resolved

DV-M4 Protocol malfunction MEDIUM Resolved

VW-M1 User Loss MEDIUM Acknowledged

L-M1 User Loss MEDIUM Acknowledged

GLOBAL-L1 Un-used errors LOW Resolved

GLOBAL-L2 Naming LOW Acknowledged

DV-L1 Missing checks LOW Resolved

BC-L1 Natspec LOW Resolved

LENS-L1 Incorrect behaviour LOW Acknowledged

LL-L1 Natspec LOW Resolved

CAPO-L1 Composability LOW Acknowledged

CAPO-L Incorrect behavior LOW Acknowledged

FPO-L1 Incorrect behavior LOW Acknowledged

0xWeiss 9

[GLOBAL-M1] Protocol is vulnerable when
_distributionWindow is set to 0.

Severity Category Status

MEDIUM Rate manipulation Acknowledged

Description

The yield in the depositor vault is distributed in a linear way depending on the
_distributionWindow specified. This will calculate how much yield to distribute in

any block from previous donations to the contract.

If this _distributionWindow is set to 0, it can open multiple ways of manipulating
balances, and the exchange rate of AUSD from the depositor vault oracle.

 uint256 exchangeRate = vault.getExchangeRate();

 uint256 price = exchangeRate.mulDiv(denominatorPrice.normalize(decimal
s), scalar).normalize(decimals, USDMath.DECIMALS);

There could be a scenario where you could in theory donate a large amount to
increase the price of AUSD, borrow the maximum against it, and then withdraw what
you donated.

Recommendation

To not open any of these attack vectors, do never set _distributionWindow to 0.

Very important to keep in mind also for any possible forks of the codebase in the
future.

Resolution

Acknowledged. The distribution window is controlled through admin control, so the
risk is mitigated. Additionally, a large donation would increase the price of AUSD, but
removing the donation wouldn’t decrease the price of AUSD as the donation would
be shared amongst all depositors.

0xWeiss 10

[DV-M1] setDistributionWindow distributes the yield post
being updated.

Severity Category Status

MEDIUM User Loss Resolved

Description

The yield in the depositor vault is distributed in a linear way depending on the
_distributionWindow specified. This will calculate how much yield to distribute in

any block from previous donations to the contract.

When updating the _distributionWindow though, the call to distribute() happens
after the window is updated affecting on the calculation of previous yield that was
supposed to be distributed:

function setDistributionWindow(uint256 distributionWindow) virtual public
{
 _distributionWindow = distributionWindow;

 distribute();

 emit SetDistributionWindow(msg.sender, distributionWindow);
 }

Recommendation

Move the distribute() call before updating the window.

function setDistributionWindow(uint256 distributionWindow) virtual public
{
+ distribute();
 _distributionWindow = distributionWindow;

- distribute();

 emit SetDistributionWindow(msg.sender, distributionWindow);
 }

Resolution

Fixed at commit: db960b765c85aab42c4465335071b6a6f81730ff

0xWeiss 11

[DV-M2] Supply caps can be bypassed through
donating on the vault.

Severity Category Status

MEDIUM Protocol malfunction Acknowledged

Description

Currently, AMBIT is using supply caps to control the amount of assets that can be on
the vault to have a healthy and secure launch.

 function setMaxSupply(uint256 maxSupply) external onlyAdmin {
 _maxSupply = maxSupply;

This cap is enforced everytime assets are deposited into the vault, in this specfic
case, it would be USDT:

 if (getTotalAssets() + amount > _maxSupply) {
 revert Errors.DepositorVault_MaximumSupplyExceeded(_maxSupply);
 }

Though this cap is not enforced when donating, allowing the distributed yield to be
added to the total assets after being issued.

 return (totalAssets + yield, totalYield - yield);

Recommendation

Enforce the supply caps also while donating, if the issued yield + the total assets is
more than the usdt cap, do not issue the remainder yield until the getTotalAssets()
+ yield <= _maxSupply.

Resolution

Acknowledged. This is accepted as is but implementing this would cause
downstream problems in that it would stop users being able to repay their loans as
yield is donated during the loan repayment.

0xWeiss 12

[DV-M3] Snapshot data might be inaccurate if
there hasn’t been a deposit or withdrawal for over
a week.

Severity Category Status

MEDIUM User Loss Resolved

Description

There is an edge-case where no snapshots have been taken for over a week, which
means there have been no supplies or withdrawals.

If there has been a donation beforehand and there have been no
deposits/withdrawals, the yield will be distributed after the distribution window period
(currently set to 1 week).

This will change the totalAssets() in the vault, but no snapshot will be taken, leading
to inaccurate data.

Recommendation

Add an edge-case if statement that if there hasn’t been a snapshot in the distribution
window period and there is yield from a previous donation, snapshot it.

Resolution

Fixed at commit: f10c207e43c898d9eb65c624aa0b8f5193fa1475

0xWeiss 13

[DV-M4] Sanctioned users can still interact with
the vault by leveraging the vault marketplace.

Severity Category Status

MEDIUM Protocol malfunction Resolved

Description

Ambit uses a sanctionable modifier which is a global sanction list for wallets that are
linked to people like North Korean hackers, drug traffickers etc. This modifier is used
on the depositor vault when calling deposit() and withdraw().

This sanction list can be bypassed from the depositor vault marketplace as it takes
msg.sender when depositing in the buy() function, allowing a sanctioned wallet to

deposit assets in the vault.

Recommendation

Add the to:

+ function buy(uint256 amount, IMarketplaceAdapter.Parameters calldata par
ams) external returns (uint256) notSanctioned(msg.sender) {
+ function sell(uint256 amount, IMarketplaceAdapter.Parameters calldata pa
rams) external returns (uint256) notSanctioned(msg.sender) {

in the depositor vault marketplace.

Resolution

Fixed at commit: 340aa4bbb0be7a2a90d94f18720bfc94ef0d4ef7

0xWeiss 14

[VW-M1] Truncation in the vesting wallet will
eventually unlock 100% of the tokens one month
later.

Severity Category Status

MEDIUM User Loss Acknowledged

Description

Given the truncation in the vesting calculation, investors/team members on the
vesting wallet will receive their full vesting a month later than specified:

return (totalAllocation * (ellapsed / _interval * _interval)) / (duration(
));

Given the following scenario:

• start timestamp: 1708105605 (block.timestamp)

• durationSeconds: 157680000 (5 years)

• interval: 2630000 (1 month)

It takes 5 years and 1 month to fully release the whole vested amount.

Recommendation

Do not apply truncation so that the full amount is able to be claimed by the 5-year
mark and not a month late or specify 4 years and 11 months as the durationSeconds

given that everything will be vested on the 5-year mark.

Resolution

Acknowledged, though vesting durations will be configured accordingly.

0xWeiss 15

[L-M1] Points are not claimed when accruing
rewards which will claim less points than available
when those are accrued.

Severity Category Status

MEDIUM User Loss Acknowledged

Description

When a user tries to claim rewards for their loyalty points, those points are not
accrued beforehand. This will cause the claim of rewards to be stale if the user has
points already accrued but has not claimed them separately.

Eventually, this will claim less rewards than the ones that should be claimed.

Recommendation
function claimRewards(address account, address token) external onlyRewardT
okens(token) whenNotPaused {

- ILoyaltyStorage.UserReward memory userReward = accrueRewards(account,
token);
+ claimPoints(account);
+ ILoyaltyStorage.UserReward memory userReward = loyaltyStorage.getUser
Reward(account,token);

 uint256 amount = userReward.accrued;
 userReward.accrued = 0;

 ILoyaltyStorage loyaltyStorage = _registry.getLoyaltyStorage();
 loyaltyStorage.setUserReward(account, token, userReward);

 IERC20Metadata(token).safeTransfer(account, amount);

 emit ClaimRewards(account, token, msg.sender, amount);
 }

Resolution

Acknowledged. Leaving as is for now, will handle in the frontend.

0xWeiss 16

[GLOBAL-L1] Un-used errors across codebase.

Severity Category Status

LOW Un-used errors Resolved

Description

The following errors are un-used across the codebase:

error Validation_LiquidationDiscountOutOfRange(BPS maxLTV);
 error Hooks_NotImplemented();
 error Portfolio_SlippageExceeded(uint256 actual, uint256 expected);
 error DepositorVault_FlashLoanAmountExceeded(uint256 available, uint256
amount);
 error DepositorVault_FlashLoanTokenNotSupported(address token);
 error DepositorVault_FlashLoanReceiverNotAllowed(address receiver);
 error DepositorVault_FlashLoanReceiverFailed(address receiver);
 error DepositorVault_WithdrawUnavailableInCurrentBlock(uint256 current
Block, uint256 lastUpdateBlock);

 // dynamic interest rate model
 error DynamicInterestRateModel_PrecisionTooLarge(uint256 decimals);

 // token vesting
 error TokenVesting_TimestampNotReached(uint256 timestamp);

 error TokenVesting_NotAvailable(uint256 timestamp);

Recommendation

Remove them.

Resolution

Fixed at commit: 248f30316a8bcd0d6ba0bfb1057b285cd0b64900

0xWeiss 17

[GLOBAL-L2] Misleading naming convention for
native transfers

Severity Category Status

LOW Naming Acknowledged

Description

Ambit will start deploying in BSC, therefore ETH is not the main currency of that
chain. Also, when deploying multi-chain, the same might be the case for other
chains.

The name that Ambit has in Portfolio, Sweepable, and Treasury funtions is
misleading. The functions interacting with the native currency are: supplyETH,
sweepETH…

 function supplyETH() external payable
 function sweepETH(uint256 amount) public
 function transferETH(address recipient, uint256 amount) external

These functions should be renamed to supplyNative, sweepNative, transferNative

Recommendation

Update the naming convention to: supplyNative, sweepNative, transferNative

Resolution

Acknowledged. This has become a convention that is used on Solidity protocols so
will keep as is for now.

0xWeiss 18

[DV-L1] Missing a max cap for the donation fee.

Severity Category Status

LOW Missing checks Resolved

Description

The depositor vault has a donation fee which as of now can be set to as much as it is
wanted eventually being able to steal from anyone donating if it is too high.

This fee is then sent to the treasury:

(uint256 feeAmount, address feeReceiver) = previewDonationFee(amount);

 if (feeAmount > 0) {
 underlyingAsset.safeTransferFrom(msg.sender, feeReceiver, feeAmount)
;
 }

Currently there is no max fee that can be set:

function setDonationFee(Fees.Parameters memory fee) external onlyAdmin {
 _donationFee = fee;

 emit SetDonationFee(msg.sender, fee);
 }

Recommendation

Add a max donation fee validation to not allow the value to be set to high:

function setDonationFee(Fees.Parameters memory fee) external onlyAdmin {
 _donationFee = fee;

+ if (BPS.unwrap(_donationFee.bps) > MAX_DONATION_FEE) {
+ revert Errors.Validation_LimitExceeded(
+ MAX_DONATION_FEE,
+ BPS.unwrap(_donationFee.bps)
+);
+ }

 emit SetDonationFee(msg.sender, fee);
 }

Resolution

Fixed at commit: b3d05c76c890d6bd51969e65e63ebdfd100b03f6

0xWeiss 19

[BC-L1] Incorrect NatSpec

Severity Category Status

LOW NatSpec Resolved

Description

On the function beforeSupply(address, uint256, uint256) internal virtual {
} function in the Base Custodian contract, there is the following NatSpec:

/// @dev called before the assets are transferred from the supplier.

Meaning that this will be triggered before the user transfers the funds. When you go
to the implementation of the supply() function, you can see how this is not correct,
and in fact, it is called after transferring funds:

 _underlyingAsset.safeTransferFrom(supplier, address(this), amount);

 shares = previewSupply(amount);

 beforeSupply(supplier, amount, shares);

Recommendation

Change the comment to the following:

- /// @dev called before the assets are transferred from the supplier.
+ /// @dev called after the assets are transferred from the supplier.

Resolution

Fixed at commit: d24478a325236488cd4ff46a40e6717ac02db168

0xWeiss 20

[LENS-L1] getHealthScore() incorrectly returns
when the liabilities are 0

Severity Category Status

LOW Incorrect behavior Acknowledged

Description

If a user has never interacted with the protocol, the Lens contract will return a health
score of a 1000 while it should return a healthscore of 0, as it has never interacted.

 IMarket market = _registry.getMarket();

 uint256 liabilities = market.getLiabilities(account);

 if (liabilities == 0) {
 return MAX_HEALTH_SCORE;
 }
 return calculateHealthScore(market.getBorrowLimit(account, false), lia
bilities);
 }

Recommendation

Update it so that it returns 0 for new accounts:

 if (liabilities == 0) {
+if (borrowLimit == 0){
+ return 0;
+}
 return MAX_HEALTH_SCORE;
 }

Resolution

Acknowledged. A health score of 1000 (perfect) is preferrable as a health score of 0
could then have a dual meaning, i.e., the user hasn’t borrowed, or they have
borrowed but their portfolio is now worth zero.

0xWeiss 21

[LL-L1] Incorrect boost is specified.

Severity Category Status

LOW NatSpec Resolved

Description

Currently a 10x burning boost is specified while a 5x burning boost is being used:

// the boost to apply to burnt token points
 uint32 public constant BURN_BOOST = 50; // 10.0

Recommendation

Consider changing the comment to accurately represent the correct boost multiplier:

// the boost to apply to burnt token points
- uint32 public constant BURN_BOOST = 50; // 10.0
+ uint32 public constant BURN_BOOST = 50; // 5.0

Resolution

Fixed at commit: 3adf5938dd8a147b36984dad20efeeac3cc877dc

…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
………………..

0xWeiss 22

[CAPO-L1] Timeout can’t be adjusted.

Severity Category Status

LOW Composability Acknowledged

Description

Currently, on the price feeds, it a price is treated as stale if it surpasses the timeout:

return block.timestamp - timestamp > _timeout;

This _timeout is currently immutable and won’t be able to be updated if needed. As

Chainlink is an external system and the accurate _timeout might be subject to
change on the future, it should be able to be updated.

Recommendation

Add a permissioned setter function for setting the timeout if needed.

- uint256 private immutable _timeout;
+ uint256 private _timeout;

Resolution

Acknowledged. A new contract can be redeployed if a timeout change is needed.

…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………………………………………………………………
…………………………………………,,,
,,,,,,,,

0xWeiss 23

[CAPO-L2] BNB/USD feed is used for WBNB/USD

Severity Category Status

LOW Incorrect behavior Acknowledged

Description

According to on-chain data, Ambit is using the price feed of BNB/USD from
Chainlink: https://data.chain.link/bsc/mainnet/crypto-usd/bnb-usd to price WBNB.

While this is not a big problem, WBNB might have small deviation in prices over the
time in comparison to BNB.

Recommendation

Request a WBNB/USD price feed to be added in Chainlink so the price of the correct
asset can be fetched.

Resolution

Acknowledged, from a liquidation perspective, WBNB can be exchanged for BNB.

0xWeiss 24

[FPO-L1] Most stale price can be used instead of
most recent one.

Severity Category Status

LOW Incorrect behavior Acknowledged

Description

Ambit has a double oracle architecture, featuring Chainlink as the main oracle and
Binance Oracles as secondary oracles.

If both oracles are stale, it will always return the Chainlink price, instead of the most
recently updated.

 if (isStale) {
 (USD fallbackPrice, bool fallbackIsStale) = _fallbackOracle.getLates
tPrice();

 // return the most recent price
 return fallbackIsStale == false ? (fallbackPrice, false) : (price, i
sStale);
 }

Recommendation

Add logic to return the least stale price in case both are stale.

Resolution

Acknowledged, will resolve in a future release.

…………………………..

…………………………..

…………………………..

0xWeiss 25

DISCLAIMER

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts Marc
Weiss to perform a security assessment. This report does not provide any
warranty or guarantee regarding the absolute bug-free nature of the
technology analyzed, nor do they provide any indication of the
technologies proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report in no
way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process
intending to help our customers increase the quality of their code while
reducing the high level of risk presented by cryptographic tokens and
blockchain technology. Blockchain technology and cryptographic assets
present a high level of ongoing risk.

My position is that each company and individual are responsible for their
own due diligence and continuous security. My goal is to help reduce the
attack vectors and the high level of variance associated with utilizing new
and consistently changing technologies, and in no way claims any
guarantee of security or functionality of the technology we agree to
analyze. Therefore, I do not guarantee the explicit security of the audited
smart contract, regardless of the verdict.

	Summary
	About 0xWeiss
	Protocol Summary
	Audit Summary
	Vulnerability Summary
	Severity Classification
	Methodology
	AUDIT SCOPE
	Findings and Resolutions
	[GLOBAL-M1] Protocol is vulnerable when _distributionWindow is set to 0.
	Description
	Recommendation
	Resolution

	[DV-M1] setDistributionWindow distributes the yield post being updated.
	Description
	Recommendation
	Resolution

	[DV-M2] Supply caps can be bypassed through donating on the vault.
	Description
	Recommendation
	Resolution

	[DV-M3] Snapshot data might be inaccurate if there hasn’t been a deposit or withdrawal for over a week.
	Description
	Recommendation
	Resolution

	[DV-M4] Sanctioned users can still interact with the vault by leveraging the vault marketplace.
	Description
	Recommendation
	Resolution

	[VW-M1] Truncation in the vesting wallet will eventually unlock 100% of the tokens one month later.
	Description
	Recommendation
	Resolution

	[L-M1] Points are not claimed when accruing rewards which will claim less points than available when those are accrued.
	Description
	Recommendation
	Resolution

	[GLOBAL-L1] Un-used errors across codebase.
	Description
	Recommendation
	Resolution

	[GLOBAL-L2] Misleading naming convention for native transfers
	Description
	Recommendation
	Resolution

	[DV-L1] Missing a max cap for the donation fee.
	Description
	Recommendation
	Resolution

	[BC-L1] Incorrect NatSpec
	Description
	Recommendation
	Resolution

	[LENS-L1] getHealthScore() incorrectly returns when the liabilities are 0
	Description
	Recommendation
	Resolution

	[LL-L1] Incorrect boost is specified.
	Description
	Recommendation
	Resolution

	[CAPO-L1] Timeout can’t be adjusted.
	Description
	Recommendation
	Resolution

	[CAPO-L2] BNB/USD feed is used for WBNB/USD
	Description
	Recommendation
	Resolution

	[FPO-L1] Most stale price can be used instead of most recent one.
	Description
	Recommendation
	Resolution

	DISCLAIMER

